scispace - formally typeset
Search or ask a question
Book ChapterDOI

Big Data Security Intelligence for Healthcare Industry 4.0

TL;DR: This chapter proposes a secure Industrial Internet of Things (IoT) architecture to store and process scalable sensor data (big data) for health care applications using proposed Meta Cloud-Redirection (MC-R) architecture with big data knowledge system.
Abstract: Nowadays, sensors are playing a vital role in almost all applications such as environmental monitoring, transport, smart city applications and healthcare applications and so on. Especially, wearable medical devices with sensors are essential for gathering of rich information indicative of our physical and mental health. These sensors are continuously generating enormous data often called as Big Data. It is difficult to process and analyze the Big Data for finding valuable information. Thus effective and secure architecture is needed for organizations to process the big data in integrated industry 4.0. These sensors are continuously generating enormous data. Hence, it is difficult to process and analyze the valuable information. This chapter proposes a secure Industrial Internet of Things (IoT) architecture to store and process scalable sensor data (big data) for health care applications. Proposed Meta Cloud-Redirection (MC-R) architecture with big data knowledge system is used to collect and store the sensor data (big data) generated from different sensor devices. In the proposed system, sensor medical devices are fixed with the human body to collect clinical measures of the patient. Whenever the respiratory rate, heart rate, blood pressure, body temperature and blood sugar exceed its normal value then the devices send an alert message with clinical value to the doctor using a wireless network. The proposed system uses key management security mechanism to protect big data in industry 4.0.
Citations
More filters
Journal ArticleDOI
TL;DR: Ten major technologies of Industry 4.0 can fulfil the requirements of customised face masks, gloves, and collect information for healthcare systems for proper controlling and treating of COVID-19 patients.
Abstract: Background and aims COVID 19 (Coronavirus) pandemic has created surge demand for essential healthcare equipment, medicines along with the requirement for advance information technologies applications. Industry 4.0 is known as the fourth industrial revolution, which has the potential to fulfil customised requirement during COVID-19 crisis. This revolution has started with the applications of advance manufacturing and digital information technologies. Methods A detailed review of the literature is done on the technologies of Industry 4.0 and their applications in the COVID-19 pandemic, using appropriate search words on the databases of PubMed, SCOPUS, Google Scholar and Research Gate. Results We found several useful technologies of Industry 4.0 which help for proper control and management of COVID-19 pandemic and these have been discussed in this paper. The available technologies of Industry 4.0 could also help the detection and diagnosis of COVID-19 and other related problems and symptoms. Conclusions Industry 4.0 can fulfil the requirements of customised face masks, gloves, and collect information for healthcare systems for proper controlling and treating of COVID-19 patients. We have discussed ten major technologies of Industry 4.0 which help to solve the problems of this virus. It is useful to provide day to day update of an infected patient, area-wise, age-wise and state-wise with proper surveillance systems. We also believe that the proper implementation of these technologies would help to enhance education and communication regarding public health. These Industry 4.0 technologies could provide a lot of innovative ideas and solution for fighting local and global medical emergencies.

482 citations


Cites background from "Big Data Security Intelligence for ..."

  • ...It provides a smart supply chain of medical disposable s and equipment during this crisis by which the patients can receive the required essential med ical items, in time [3,4]....

    [...]

Journal ArticleDOI
TL;DR: By selectively analyzing the literature, this paper systematically survey how the adoption of the above-mentioned Industry 4.0 technologies (and their integration) applied to the health domain is changing the way to provide traditional services and products.

431 citations

Journal ArticleDOI
TL;DR: A new model to optimize virtual machines selection in cloud-IoT health services applications to efficiently manage a big amount of data in integrated industry 4.0 applications is proposed and outperforms on the state-of-the-art models in total execution time and the system efficiency.

249 citations

Journal ArticleDOI
TL;DR: This paper uses dynamic time warping (DTW) algorithm to compare the various shapes of foot movements collected from the wearable IoT devices to evaluate the effectiveness of the DTW method for Alzheimer disease diagnosis.
Abstract: Alzheimer disease is a significant problem in public health. Alzheimer disease causes severe problems with thinking, memory and activities. Alzheimer disease affected more on the people who are in the age group of 80-year-90. The foot movement monitoring system is used to detect the early stage of Alzheimer disease. internets of things (IoT) devices are used in this paper to monitor the patients’ foot movement in continuous manner. This paper uses dynamic time warping (DTW) algorithm to compare the various shapes of foot movements collected from the wearable IoT devices. The foot movements of the normal individuals and people who are affected by Alzheimer disease are compared with the help of middle level cross identification (MidCross) function. The identified cross levels are used to classify the gait signal for Alzheimer disease diagnosis. Sensitivity and specificity are calculated to evaluate the DTW algorithm based classification model for Alzheimer disease. The classification results generated using the DTW is compared with the various classification algorithms such as inertial navigation algorithm, K-nearest neighbor classifier and support vector machines. The experimental results proved the effectiveness of the DTW method.

237 citations

Journal ArticleDOI
TL;DR: This paper discusses the similarities and differences among Big Data technologies used in different IoT domains, suggests how certain Big Data technology used in one IoT domain can be re-used in another IoT domain, and develops a conceptual framework to outline the critical Big data technologies across all the reviewed IoT domains.

213 citations

References
More filters
Journal ArticleDOI
01 Jan 2010
TL;DR: A variety of system implementations are compared in an approach to identify the technological shortcomings of the current state-of-the-art in wearable biosensor solutions and evaluate the maturity level of the top current achievements in wearable health-monitoring systems.
Abstract: The design and development of wearable biosensor systems for health monitoring has garnered lots of attention in the scientific community and the industry during the last years. Mainly motivated by increasing healthcare costs and propelled by recent technological advances in miniature biosensing devices, smart textiles, microelectronics, and wireless communications, the continuous advance of wearable sensor-based systems will potentially transform the future of healthcare by enabling proactive personal health management and ubiquitous monitoring of a patient's health condition. These systems can comprise various types of small physiological sensors, transmission modules and processing capabilities, and can thus facilitate low-cost wearable unobtrusive solutions for continuous all-day and any-place health, mental and activity status monitoring. This paper attempts to comprehensively review the current research and development on wearable biosensor systems for health monitoring. A variety of system implementations are compared in an approach to identify the technological shortcomings of the current state-of-the-art in wearable biosensor solutions. An emphasis is given to multiparameter physiological sensing system designs, providing reliable vital signs measurements and incorporating real-time decision support for early detection of symptoms or context awareness. In order to evaluate the maturity level of the top current achievements in wearable health-monitoring systems, a set of significant features, that best describe the functionality and the characteristics of the systems, has been selected to derive a thorough study. The aim of this survey is not to criticize, but to serve as a reference for researchers and developers in this scientific area and to provide direction for future research improvements.

2,051 citations

Journal ArticleDOI
TL;DR: This paper provides a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research, and presents a taxonomy of B Ban projects that have been introduced/proposed to date.
Abstract: Advances in wireless communication technologies, such as wearable and implantable biosensors, along with recent developments in the embedded computing area are enabling the design, development, and implementation of body area networks. This class of networks is paving the way for the deployment of innovative healthcare monitoring applications. In the past few years, much of the research in the area of body area networks has focused on issues related to wireless sensor designs, sensor miniaturization, low-power sensor circuitry, signal processing, and communications protocols. In this paper, we present an overview of body area networks, and a discussion of BAN communications types and their related issues. We provide a detailed investigation of sensor devices, physical layer, data link layer, and radio technology aspects of BAN research. We also present a taxonomy of BAN projects that have been introduced/proposed to date. Finally, we highlight some of the design challenges and open issues that still need to be addressed to make BANs truly ubiquitous for a wide range of applications.

1,239 citations

Journal ArticleDOI
TL;DR: The proposed CodeBlue integrates sensor nodes and other wireless devices into a disaster response setting and provides facilities for ad hoc network formation, resource naming and discovery, security, and in-network aggregation of sensor-produced data.
Abstract: Sensor networks, a new class of devices has the potential to revolutionize the capture, processing, and communication of critical data for use by first responders. CodeBlue integrates sensor nodes and other wireless devices into a disaster response setting and provides facilities for ad hoc network formation, resource naming and discovery, security, and in-network aggregation of sensor-produced data. We designed CodeBlue for rapidly changing, critical care environments. To test it, we developed two wireless vital sign monitors and a PDA-based triage application for first responders. Additionally, we developed MoteTrack, a robust radio frequency (RF)-based localization system, which lets rescuers determine their location within a building and track patients. Although much of our work on CodeBlue is preliminary, our initial experience with medical care sensor networks raised many exciting opportunities and challenges.

1,067 citations

Proceedings Article
01 Jan 2004
TL;DR: The architecture of CodeBlue, a wireless infrastructure intended for deployment in emergency medical care, integrating low-power, wireless vital sign sensors, PDAs, and PC-class systems, is introduced and research challenges being addressed are highlighted.
Abstract: Sensor devices integrating embedded processors, low-power, lowbandwidth radios, and a modest amount of storage have the potential to enhance emergency medical care. Wearable vital sign sensors can track patient status and location, while simultaneously operating as active tags. We introduce CodeBlue, a wireless infrastructure intended for deployment in emergency medical care, integrating low-power, wireless vital sign sensors, PDAs, and PC-class systems. CodeBlue will enhance first responders’ ability to assess patients on scene, ensure seamless transfer of data among caregivers, and facilitate efficient allocation of hospital resources. Intended to scale to very dense networks with thousands of devices and extremely volatile network conditions, this infrastructure will support reliable, ad hoc data delivery, a flexible naming and discovery scheme, and a decentralized security model. This paper introduces our architecture and highlights research challenges being addressed by the CodeBlue

892 citations

Journal ArticleDOI
TL;DR: Six use cases are presented where some of the clearest opportunities exist to reduce costs through the use of big data: high-cost patients, readmissions, triage, decompensation, adverse events, and treatment optimization for diseases affecting multiple organ systems.
Abstract: The US health care system is rapidly adopting electronic health records, which will dramatically increase the quantity of clinical data that are available electronically. Simultaneously, rapid progress has been made in clinical analytics—techniques for analyzing large quantities of data and gleaning new insights from that analysis—which is part of what is known as big data . As a result, there are unprecedented opportunities to use big data to reduce the costs of health care in the United States. We present six use cases—that is, key examples—where some of the clearest opportunities exist to reduce costs through the use of big data: high-cost patients, readmissions, triage, decompensation (when a patient’s condition worsens), adverse events, and treatment optimization for diseases affecting multiple organ systems. We discuss the types of insights that are likely to emerge from clinical analytics, the types of data needed to obtain such insights, and the infrastructure—analytics, algorithms, registries, as...

834 citations