scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Binary group III-nitride based heterostructures: band offsets and transport properties

TL;DR: In this paper, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nodes-based opto-electronic devices.
Abstract: In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the ferroelectric polarization-induced switchable interfacial coupling modulations in BaTiO3/GaN heterojunction transport behavior were investigated and its effect on the carrier conduction was investigated by band alignment studies.
Abstract: We report on the ferroelectric polarization-induced switchable interfacial coupling modulations in BaTiO3/GaN heterojunction transport behaviour. The ferroelectric barium titanate, BaTiO3 (BTO) was integrated with polar semiconductor gallium nitride (GaN). BTO with a tetragonal structure was deposited on a wurtzite (0 0 0 1) epitaxial GaN/c-Al2O3 substrate by pulsed laser deposition, which was further confirmed by x-ray diffraction and Raman spectroscopy. BTO/GaN heterojunctions with resistive switching behaviour exhibited modulations in transport characteristics due to the interfacial coupling. The ferroelectric nature and interfacial coupling effect of this heterojunction was confirmed with the help of piezo-response force microscopy. A valence band offset of 0.82 eV and conduction band offset of 0.62 eV were obtained for BTO/GaN heterojunctions by x-ray photo-electron spectroscopy. This interfacial coupling phenomenon was analysed and its effect on the carrier conduction in the heterojunction was investigated by band alignment studies.

8 citations

Journal ArticleDOI
TL;DR: In this paper , the role of transition metal chalcogenides (TMCs) for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution are discussed.
Abstract: Hydrogen evolution from water splitting is considered to be an important renewable clean energy source and alternative to fossil fuels for future energy sustainability. Photocatalytic and electrocatalytic water splitting is considered to be an effective method for the sustainable production of clean energy, H2. This perspective especially emphasizes research advances in the solution-assisted synthesis of transition metal chalcogenides for both photo and electrocatalytic hydrogen evolution applications. Transition metal chalcogenides (CdS, MoS2, WS2, TiS2, TaS2, ReS2, MoSe2, and WSe2) have received intensified research interest over the past two decades on account of their unique properties and great potential across a wide range of applications. The photocatalytic activity of transition metal chalcogenides can further be improved by elemental doping, heterojunction formation with noble metals (Au, Pt, etc.), non-chalcogenides (MoS2, In2S3, NiS1-X), morphological tuning, through various solution-assisted synthesis processes, including liquid-phase exfoliation, heat-up, hot-injection methods, hydrothermal/solvothermal routes and template-mediated synthesis processes. In this review we will discuss recent developments in transition metal chalcogenides (TMCs), the role of TMCs for hydrogen production and various strategies for surface functionalization to increase their activity, different synthesis methods, and prospects of TMCs for hydrogen evolution. We have included a brief discussion on the effect of surface hydrogen binding energy and Gibbs free energy change for HER in electrocatalytic hydrogen evolution.

8 citations

Journal ArticleDOI
TL;DR: In this article, bias-dependent low-frequency noise measurements were used to determine the shape of the noise spectrum, its level and variation with the applied bias, which may be useful for improving the electrical behaviour of metal/GaN interfaces.
Abstract: The non-ideal behaviour of the GaN-based Schottky diode is in general attributed to the combined effect of interface traps and barrier inhomogeneities at the metal/GaN interface In our present work, we determine the relative contribution of these two non-idealities to electronic transport in Schottky barrier diodes, by using bias-dependent low-frequency noise measurements Due to the single-trap-dominated electronic transport at lower bias, the noise spectra turn out to be Lorentzian, whereas the distribution in time constants available for interface states due to barrier inhomogeneities causes a deviation from Lorentzian towards a 1/f-type noise spectrum in higher bias regions The present study indicates that the shape of the noise spectrum, its level and variation with the applied bias, determine the dominant current transport mechanism at the Ni/GaN interface, which may be useful for improving the electrical behaviour of metal/GaN interfaces

7 citations

Journal ArticleDOI
TL;DR: In this paper, structural, electrical, and transport properties of high quality CVD-fabricated n-GaN nanorods (NRs)/p-Si heterojunction diodes were reported.
Abstract: We report on the structural, electrical, and transport properties of high quality CVD-fabricated n-GaN nanorods (NRs)/p-Si heterojunction diodes. The X-ray diffraction (XRD) studies reveal the growth of hexagonal wurtzite GaN structure. The current–voltage (I–V) characteristics of the n-GaN NRs/p-Si heterojunction were measured in the temperature range of 300–475 K. The ideality factor (n) and zero-bias barrier height (ϕB0) are found to be strongly temperature-dependent. The calculated values of ϕB0 are 0.95 and 0.99 eV according to Gaussian distributions (GD) and modified Richardson for GD, respectively, which are in good agreement with the band offset of GaN/Si (0.95 eV). A Richardson constant of 37 cm−2 K−2 was obtained from the modified Richardson plot, which is close to the theoretical value for p-Si (32 cm−2 K−2). The Gaussian distributions (GD) of inhomogeneous barrier height (BHs) and modified Richardson for GD of BHs with TE have also been used to explain the obtained transport properties.

6 citations

References
More filters
Book
21 Mar 1997
TL;DR: The physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GAN p-type GaN InGaN Zn and Si co-doped GaN double-heterostructure blue and blue green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGAN MQW LDs latest results as discussed by the authors.
Abstract: Physics of gallium nitrides and related compounds GaN growth p-Type GaN obtained by electron beam irradiation n-Type GaN p-Type GaN InGaN Zn and Si co-doped InGaN/AlGaN double-heterostructure blue and blue-green LEDs inGaN single-quantum-well structure LEDs room-temperature pulsed operation of laser diodes emission mechanisms of LEDs and LDs room temperature CW operation of InGaN MQW LDs latest results - lasers with self-organized InGaN quantum dots

3,805 citations

Journal ArticleDOI
TL;DR: In this article, the InGaN multi-quantum-well (MQW) structure was used for laser diodes, which produced 215mW at a forward current of 2.3
Abstract: InGaN multi-quantum-well (MQW) structure laser diodes (LDs) fabricated from III-V nitride materials were grown by metalorganic chemical vapor deposition on sapphire substrates. The mirror facet for a laser cavity was formed by etching of III-V nitride films without cleaving. As an active layer, the InGaN MQW structure was used. The InGaN MQW LDs produced 215 mW at a forward current of 2.3 A, with a sharp peak of light output at 417 nm that had a full width at half-maximum of 1.6 nm under the pulsed current injection at room temperature. The laser threshold current density was 4 kA/cm2. The emission wavelength is the shortest one ever generated by a semiconductor laser diode.

2,100 citations

Journal ArticleDOI
TL;DR: In this paper, the Schottky barrier heights and band offsets for high dielectric constant oxides on Pt and Si were calculated and good agreement with experiment is found for barrier heights.
Abstract: Wide-band-gap oxides such as SrTiO3 are shown to be critical tests of theories of Schottky barrier heights based on metal-induced gap states and charge neutrality levels. This theory is reviewed and used to calculate the Schottky barrier heights and band offsets for many important high dielectric constant oxides on Pt and Si. Good agreement with experiment is found for barrier heights. The band offsets for electrons on Si are found to be small for many key oxides such as SrTiO3 and Ta2O5 which limit their utility as gate oxides in future silicon field effect transistors. The calculations are extended to screen other proposed oxides such as BaZrO3. ZrO2, HfO2, La2O3, Y2O3, HfSiO4, and ZrSiO4. Predictions are also given for barrier heights of the ferroelectric oxides Pb1−xZrxTiO3 and SrBi2Ta2O9 which are used in nonvolatile memories.

1,947 citations

Journal ArticleDOI
Fernando Ponce1, David P. Bour1
27 Mar 1997-Nature
TL;DR: In this article, the group III elements of the semiconducting nitrides have been used for the fabrication of high-efficiency solid-state devices that emit green and blue light.
Abstract: Recent advances in fabrication technologies for the semiconducting nitrides of the group III elements have led to commercially available, high-efficiency solid-state devices that emit green and blue light Light-emitting diodes based on these materials should find applications in flat-panel displays, and blue and ultraviolet laser diodes promise high-density optical data storage and high-resolution printing

1,533 citations