scispace - formally typeset
Open AccessJournal ArticleDOI

Binary group III-nitride based heterostructures: band offsets and transport properties

Reads0
Chats0
TLDR
In this paper, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nodes-based opto-electronic devices.
Abstract
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

read more

Citations
More filters

Valence band splittings and band offsets of AlN, GaN and InN.

Su-Huai Wei, +1 more
TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Journal ArticleDOI

Graphene coupled TiO2 photocatalysts for environmental applications: A review.

TL;DR: In this paper, the fundamental mechanism and interfacial charge transfer dynamics in TiO2/graphene nanocomposites are reviewed and the design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties.
Journal ArticleDOI

Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview

Elzbieta Kusmierek
- 18 Apr 2020 - 
TL;DR: In this article, a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants is presented, with a particular focus on the main experimental conditions employed in the photo-electrocatalytic degradation of various contaminants.
Journal ArticleDOI

Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation

TL;DR: In this article, a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode, is proposed.
Journal ArticleDOI

A Review on Chemiresistive ZnO Gas Sensors

TL;DR: In this paper , the morphology and structure of these materials influence on the sensor response, and challenges and future perspectives for ZnO chemiresistive sensors are also discussed, focusing on how the morphology of the materials can influence on sensor response.
References
More filters
Journal ArticleDOI

Carrier-transport studies of III-nitride/Si3N4/Si isotype heterojunctions

TL;DR: In this article, a comparison of the I-V characteristics of GaN/Si3N4/n-Si epilayers was performed using high-resolution X-ray diffraction and thickness of ultrathin Si 3N4 layer was measured by transmission electron microscopy.
Journal ArticleDOI

InN nanocolumns grown by plasma-assisted molecular beam epitaxy on A-plane GaN templates

TL;DR: In this paper, the growth of wurtzite InN nanocolumns on A-plane GaN templates and their structural and optical characterization by scanning and transmission electron microscopy, photoluminescence, and Raman spectroscopy were reported.
Journal ArticleDOI

Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy

TL;DR: The band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterojunctions are measured by X-ray photoemission spectroscopy and a large forward-backward asymmetry is observed.
Journal ArticleDOI

Interfacial structure of MBE grown InN on GaN

TL;DR: The structural properties of the interfacial area of InN thin films, grown by rf-plasma MBE on top of GaN/Al 2 O 3 substrates have been investigated by TEM and HRTEM as mentioned in this paper.
Journal ArticleDOI

Structural and optical characterization of InGaN/GaN multiple quantum wells grown by molecular beam epitaxy

TL;DR: InGaN/GaN multiple quantum wells (MQWs) were grown on sapphire substrates, which were first coated with thick GaN or AlN films, at relatively low temperatures (650°C) as mentioned in this paper.
Related Papers (5)