scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Binary group III-nitride based heterostructures: band offsets and transport properties

TL;DR: In this paper, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nodes-based opto-electronic devices.
Abstract: In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.
Citations
More filters
01 Mar 1997
TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Abstract: First‐principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal‐field splitting parameters ΔCF of −217, 42, and 41 meV, respectively, and spin–orbit splitting parameters Δ0 of 19, 13, and 1 meV, respectively. In the zinc blende structure ΔCF≡0 and Δ0 are 19, 15, and 6 meV, respectively. The unstrained AlN/GaN, GaN/InN, and AlN/InN valence band offsets for the wurtzite (zinc blende) materials are 0.81 (0.84), 0.48 (0.26), and 1.25 (1.04) eV, respectively. The trends in these spectroscopic quantities are discussed and recent experimental findings are analyzed in light of these predictions.

274 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism and interfacial charge transfer dynamics in TiO2/graphene nanocomposites are reviewed and the design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties.

103 citations

Journal ArticleDOI
TL;DR: In this article, a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants is presented, with a particular focus on the main experimental conditions employed in the photo-electrocatalytic degradation of various contaminants.
Abstract: Industrial sources of environmental pollution generate huge amounts of industrial wastewater containing various recalcitrant organic and inorganic pollutants that are hazardous to the environment. On the other hand, industrial wastewater can be regarded as a prospective source of fresh water, energy, and valuable raw materials. Conventional sewage treatment systems are often not efficient enough for the complete degradation of pollutants and they are characterized by high energy consumption. Moreover, the chemical energy that is stored in the wastewater is wasted. A solution to these problems is an application of photoelectrocatalytic treatment methods, especially when they are coupled with energy generation. The paper presents a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants. The fundamentals of photoelectrocatalytic reactions and the mechanism of pollutants treatment as well as parameters affecting the treatment process are presented. Examples of different semiconductor photoelectrodes that are applied in treatment processes are described in order to present the strengths and weaknesses of the photoelectrocatalytic treatment of industrial wastewater. This overview is an addition to the existing knowledge with a particular focus on the main experimental conditions employed in the photoelectrocatalytic degradation of various pollutants with the application of semiconductor photoelectrodes.

53 citations

Journal ArticleDOI
TL;DR: In this article, a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode, is proposed.
Abstract: High-density dislocations in materials and poor electrical conductivity of p-type AlGaN layers constrain the performance of the ultraviolet light emitting diodes and lasers at shorter wavelengths. To address those technical challenges, we design, grow, and fabricate a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode. Calculated electronic band diagram and carrier concentrations show an automatic formation of a p–n junction with electron and hole concentrations of ∼1018 /cm3 in the graded AlGaN layers without intentional doping. The transmission electron microscopy experiment confirms the composition variation in the axial direction of the graded AlGaN nanowires. Significantly lower turn-on voltage of 6.5 V (reduced by 2.5 V) and smaller series resistance of 16.7 Ω (reduced by nearly four times) are achieved in the GRINSCH diode, compared with the ...

48 citations

Journal ArticleDOI
TL;DR: In this paper , the morphology and structure of these materials influence on the sensor response, and challenges and future perspectives for ZnO chemiresistive sensors are also discussed, focusing on how the morphology of the materials can influence on sensor response.
Abstract: Chemiresistive gas sensors have been widely applied to monitor analytes of environmental, food and health importance. Among the plethora of materials that can be used for designing chemiresistive sensors, ZnO is one of the most explored for gas sensing, as this material has a low-cost, is non-toxic and can be easily obtained through standard chemical synthesis. Adding to this, ZnO can form heterostructures capable to improve sensor performance regarding sensitivity, selectivity and stability. Moreover, ZnO heterostructures also contribute to lower operating temperature of gas sensors, since the synergistic effects contribute to amplify the sensor signal. In this review, we survey recent advances on different types of chemiresistive ZnO-based gas sensors, focusing on how the morphology and structure of these materials influence on the sensor response. Challenges and future perspectives for ZnO chemiresistive sensors are also discussed.

47 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, structural characteristics of nonpolar (1120) a-plane GaN thin films grown on (1102) r-plane sapphire substrates via metalorganic chemical vapor deposition were described.
Abstract: In this letter we describe the structural characteristics of nonpolar (1120) a-plane GaN thin films grown on (1102) r-plane sapphire substrates via metalorganic chemical vapor deposition. Planar growth surfaces have been achieved and the potential for device-quality layers realized by depositing a low temperature nucleation layer prior to high temperature epitaxial growth. The in-plane orientation of the GaN with respect to the r-plane sapphire substrate was confirmed to be [0001]GaN‖[1101]sapphire and [1100]GaN‖[1120]sapphire. This relationship is explicitly defined since the polarity of the a-GaN films was determined using convergent beam electron diffraction. Threading dislocations and stacking faults, observed in plan-view and cross-sectional transmission electron microscope images, dominated the a-GaN microstructure with densities of 2.6×1010 cm−2 and 3.8×105 cm−1, respectively. Submicron pits and crystallographic terraces were observed on the optically specular a-GaN surface with atomic force m...

488 citations

Journal ArticleDOI
TL;DR: In this article, a critical evaluation of the performance capabilities of various wide bandgap semiconductors for high power and high frequency unipolar electronic devices is presented, and seven different figures of merit have been analyzed.
Abstract: This paper presents a critical evaluation of the performance capabilities of various wide bandgap semiconductors for high power and high frequency unipolar electronic devices. Seven different figures of merit have been analyzed. Theoretical calculations show that besides diamond and SiC, compounds like AlN, GaN, InN, and ZnO, and the intermetallics (Ga/sub x/In/sub 1-x/N, Al/sub x/In/sub 1-x/N, Al/sub x/Ga/sub 1-x/N, and (AlN)/sub x/(SiC)/sub 1-x/) offer several orders of magnitude improvement in the on-resistance and in the potential for successful operation at higher temperatures. >

473 citations

Journal ArticleDOI
TL;DR: In this paper, a GaN metal-oxide-semiconductor high-electron-mobility-transistor (MOS-HEMT) using atomic layer-deposited (ALD) Al2O3 as the gate dielectric is presented.
Abstract: We report on a GaN metal-oxide-semiconductor high-electron-mobility-transistor (MOS-HEMT) using atomic-layer-deposited (ALD) Al2O3 as the gate dielectric. Compared to a conventional GaN high-electron-mobility-transistor (HEMT) of similar design, the MOS-HEMT exhibits several orders of magnitude lower gate leakage and several times higher breakdown voltage and channel current. This implies that the ALD Al2O3∕AlGaN interface is of high quality and the ALD Al2O3∕AlGaN∕GaN MOS-HEMT is of high potential for high-power rf applications. In addition, the high-quality ALD Al2O3 gate dielectric allows the effective two-dimensional (2D) electron mobility at the AlGaN∕GaN heterojunction to be measured under a high transverse field. The resulting effective 2D electron mobility is much higher than that typical of Si, GaAs or InGaAs metal-oxide-semiconductor field-effect-transistors (MOSFETs).

451 citations

Journal ArticleDOI
TL;DR: In this paper, the electrical and luminescent properties of GaN epitaxial films grown on AlN•coated sapphire by reactive molecular beam epitaxy have been studied.
Abstract: The electrical and luminescent properties of the GaN epitaxial films grown on AlN‐coated sapphire by reactive molecular beam epitaxy have been studied. The GaN films on AlN epitaxial films have larger Hall mobilities and show more intense cathodoluminescence peaks at a wavelength of 360 nm than those of the GaN films grown directly on sapphire, which suggests that the crystal qualities of GaN films are improved by use of AlN‐coated sapphire as substrates. The lattice matching and small difference of the thermal expansion coefficients between GaN and AlN are considered to result in the improvements.

374 citations

Journal ArticleDOI
TL;DR: In this paper, an AlGaN/GaN metal-oxide-semiconductor heterostructure field effect transistors (MOS-HFETs) were developed for high power microwave and switching devices.
Abstract: We report on AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaN heterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 °C with excellent pinch-off characteristics. These results clearly establish the potential of using AlGaN/GaN MOS-HFET approach for high power microwave and switching devices.

358 citations