scispace - formally typeset
Journal ArticleDOI: 10.1016/J.JHAZMAT.2020.124061

Bio-electrokinetic remediation of crude oil contaminated soil enhanced by bacterial biosurfactant.

05 Mar 2021-Journal of Hazardous Materials (Elsevier)-Vol. 405, pp 124061-124061
Abstract: The present study evaluating the coupling between bioremediation (BIO) and electrokinetic (EK) remediation of crude oil hydrocarbon by using bio-electrokinetic (BIO-EK) technique. The application of bacterial biosurfactant (BS) may increase the remediation efficiency by increasing the solubility of organic materials. In this work, the potential biosurfactant producing marine bacteria were isolated and identified by 16S rDNA analysis namely Bacillus subtilis AS2, Bacillus licheniformis AS3 and Bacillus velezensis AS4. Biodegradation efficiency of crude oil was found as 88%, 92% and 97% for strain AS2, AS3 and AS4 respectively, with the optimum temperature of 37 °C and pH 7. FTIR confirm the BS belongs to lipopeptide in nature. GCMS reveals that three isolates degraded the lower to higher molecular weight of the crude oil (C8 to C28) effectively. Results showed that use of BS in electokinetic remediation enhance the biodegradation rate of crude oil contaminated soil about 92% than EK (60%) in 2 days operation. BS enhances the solubilization of hydrocarbon and it leads to the faster electromigration of hydrocarbon to the anodic compartment, which was confirmed by the presence of higher total organic content than the EK. This study proven that the BIO-EK combined with BS can be used to enhance in situ bioremediation of petroleum contaminated soils.

... read more

Topics: Bioremediation (55%), Electrokinetic remediation (53%), Biodegradation (52%) ... show more
Citations
  More

13 results found


Open accessJournal ArticleDOI: 10.1016/J.ECOENV.2020.111621
Madhurya Ray1, Vipin Kumar1, Chiranjib Banerjee1, Pratishtha Gupta1  +2 moreInstitutions (1)
Abstract: The study explored the polycyclic aromatic hydrocarbon tolerance of indigenous biosurfactant producing microorganisms. Three bacterial species were isolated from crude oil contaminated sites of Haldia, West Bengal. The three species were screened for biosurfactant production and identified by 16S rRNA sequencing as Brevundimonas sp. IITISM 11, Pseudomonas sp. IITISM 19 and Pseudomonas sp. IITISM 24. The strains showed emulsification activities of 51%, 57% and 63%, respectively. The purified biosurfactants were characterised using FT-IR, GC-MS and NMR spectroscopy and found to have structural similarities to glycolipopeptides, cyclic lipopeptides and glycolipids. The biosurfactants produced were found to be stable under a wide range of temperature (0–100 °C), pH (4–12) and salinity (up to 20% NaCl). Moreover, the strains displayed tolerance to high concentrations (275 mg/L) of anthracene and fluorene and showed a good amount of cell surface hydrophobicity with different hydrocarbons. The study reports the production and characterisation of biosurfactant by Brevundimonas sp. for the first time. Additionally, the kinetic parameters of the bacterial strains grown on up to 300 mg/L concentration of anthracene and fluorene, ranged between 0.0131 and 0.0156 µmax (h−1), while the Ks(mg/L) ranged between 59.28 and 102.66 for Monod’s Model. For Haldane-Andrew’s model, µmax (h−1) varied between 0.0168 and 0.0198. The inhibition constant was highest for Pseudomonas sp. IITISM 19 on anthracene and Brevundimonas sp. IITISM 11 on fluorene. The findings of the study suggest that indigenous biosurfactant producing strains have tolerance to high PAH concentrations and can be exploited for bioremediation purposes.

... read more

5 Citations


Open access
Oscar A. Sosa1, Daniel J. Repeta2, Sara Ferrón1, Jessica A. Bryant1  +3 moreInstitutions (2)
01 Sep 2017-
Abstract: Semi-labile dissolved organic matter (DOM) accumulates in surface waters of the oligotrophic ocean gyres and turns over on seasonal to annual timescales. This reservoir of DOM represents an important source of carbon, energy, and nutrients to marine microbial communities but the identity of the microorganisms and the biochemical pathways underlying the cycling of DOM remain largely uncharacterized. In this study we describe bacteria isolated from the North Pacific Subtropical Gyre (NPSG) near Hawaii that are able to degrade phosphonates associated with high molecular weight dissolved organic matter (HMWDOM), which represents a large fraction of semi-labile DOM. We amended dilution-to-extinction cultures with HMWDOM collected from NPSG surface waters and with purified HMWDOM enriched with polysaccharides bearing alkylphosphonate esters. The HMWDOM-amended cultures were enriched in Roseobacter isolates closely related to Sulfitobacter and close relatives of hydrocarbon-degrading bacteria of the Oceanospirillaceae family, many of which encoded phosphonate degradation pathways. Sulfitobacter cultures encoding C-P lyase were able to catabolize methylphosphonate and 2-hydroxyethylphosphonate, as well as the esters of these phosphonates found in native HMWDOM polysaccharides to acquire phosphorus while producing methane and ethylene, respectively. Conversely, growth of these isolates on HMWDOM polysaccharides as source of carbon did not support robust increases in cell yields, suggesting that the constituent carbohydrates in HMWDOM were not readily available to these individual isolates. We postulate that the complete remineralization of HMWDOM polysaccharides requires more complex microbial inter-species interactions. The degradation of phosphonate esters and other common substitutions in marine polysaccharides may be key steps in the turnover of marine DOM.

... read more

5 Citations


Journal ArticleDOI: 10.1016/J.ENVPOL.2021.117556
Abstract: In the present study, produced water sample collected from the Indian crude oil reservoir is used to enrich the bacterial communities. The impact of these enriched bacterial communities on the biodegradation of crude oil, biofilm formation, and biocorrosion process are elucidated. A crude oil degradation study is carried out with the minimal salt medium and 94% of crude oil was utilized by enriched bacterial communities. During the crude oil degradation many enzymes including alkane hydroxylase, alcohol dehydrogenase, and lipase are playing a key role in the biodegradation processes. The role of enriched bacterial biofilm on biocorrosion reactions are monitored by weight loss studies and electrochemical analysis. Weight loss study revealed that the biotic system has vigorous corrosion attacks compared to the abiotic system. Both AC-Impedance and Tafel analysis confirmed that the nature of the corrosion reaction take place in the biotic system. Very less charge transfer resistance and higher corrosion current are observed in the biotic system than in the abiotic system. Scanning electron microscope confirms that the dense biofilm formation favoured the pitting type of corrosion. X-ray diffraction analysis confirms that the metal oxides formed in the corrosion systems (biotic). From the metagenomic analysis of the V3-V4 region revealed that presence of diverse bacterial communities in the biofilm, and most of them are uncultured/unknown. Among the known genus, Bacillus, Halomonas, etc are dominant in the enriched bacterial biofilm sample. From this study, we conclude that the uncultured bacterial strains are found to be playing a key role in the pitting type of corrosion and they can utilize crude oil hydrocarbons, which make them succeeded in extreme oil reservoir environments.

... read more

Topics: Biofilm (52%)

4 Citations


Journal ArticleDOI: 10.1016/J.COELEC.2021.100692
Abstract: Overall, investigations about the utilization of electrokinetic technology alone or in combination with other processes have attracted particular attention in recent years for remediation of soils contaminated with heavy metals and organic compounds. This fact is due to its peculiar benefits together with its capability of operating in a fine and low-permeability matrix. This review aimed to ascertain the most recent developments on the commonly proposed integrated technologies (electrokinetic soil washing, electrokinetics coupled with permeable reactive barriers, electrokinetic-advanced oxidation processes, and bioelectrokinetic remediation), by evaluating the gaps, challenges, and trends of these systems in the last years. Special attention is paid to the current approaches for overcoming the main bottlenecks of electrokinetics concerning scale-up and reduction of electric energy consumption by integration of renewable energies.

... read more

2 Citations


Journal ArticleDOI: 10.1080/09593330.2021.1890839
Yangyang Wang1, Qiang Ren1, Wenhao Zhan, Kaixuan Zheng1  +4 moreInstitutions (2)
Abstract: A previous isolated Gordonia sp. (Lff) was used to degrade di-n-octyl phthalate (DOP) contamination in both aqueous solution and soil. The influence of temperature, pH, inoculum size, salt content ...

... read more

Topics: Phthalate (52%)

1 Citations


References
  More

48 results found


Open accessJournal ArticleDOI: 10.1093/MOLBEV/MST197
Koichiro Tamura1, Glen Stecher2, Daniel S. Peterson2, Alan Filipski2  +2 moreInstitutions (3)
Abstract: We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge.

... read more

Topics: Mega- (51%)

33,373 Citations


Open access
01 Jan 2013-
Abstract: We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www. megasoftware.net free of charge.

... read more

Topics: Mega- (50%)

30,478 Citations


Journal ArticleDOI: 10.1016/J.BIORTECH.2009.09.043
Abstract: This review analyzes the state-of-the-art of a specific niche in biological wastewater treatment that uses immobilized eukaryotic microalgae (and several prokaryotic photosynthetic cyanobacteria), with emphasis on removing nutrients with the support of microalgae growth-promoting bacteria. Removal of other pollutants by this technology, such as heavy metals and industrial pollutants, and technical aspects related to this specific subfield of wastewater treatment are also presented. We present a general perspective of the field with most known examples from common literature, emphasizing a practical point of view in this technologically oriented topic. The potential venues of future research in this field are outlined and a critical assessment of the failures, limitations, and future of immobilized microalgae for removal of pollutants is presented.

... read more

602 Citations


Journal ArticleDOI: 10.1016/J.BIORTECH.2016.10.037
Abstract: Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years.

... read more

Topics: Microbial biodegradation (61%), Petroleum microbiology (60%), Bioremediation (54%) ... show more

510 Citations


Open accessJournal ArticleDOI: 10.1016/J.GEXPLO.2016.11.021
Sana Khalid1, Muhammad Shahid1, Nabeel Khan Niazi2, Behzad Murtaza1  +2 moreInstitutions (3)
Abstract: Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological approaches, which may be used in combination with one another to clean-up heavy metal(loid) contaminated soils to an acceptable and safe level. This review summarizes the soil contamination by heavy metal(loid)s at a global scale, accumulation of heavy metal(loid)s in vegetables to toxic levels and their regulatory guidelines in soil. In this review, we also elucidate and compare the pool of available technologies that are currently being applied for remediation of heavy metal(loid) contaminated soils, as well as the economic aspect of soil remediation for different techniques. This review article includes an assessment of the contemporary status of technology deployment and recommendations for future remediation research. Finally, the molecular and genetic basis of heavy metal(loid) (hyper)accumulation and tolerance in microbes and plants is also discussed. It is proposed that for effective and economic remediation of soil, a better understanding of remediation procedures and the various options available at the different stages of remediation is highly necessary.

... read more

475 Citations