scispace - formally typeset
Search or ask a question

Bio-Inspired Polymer Composite Actuator and Generator Driven by Water Gradients

TL;DR: Strong and flexible polymer films were developed that can exchange water with the environment to induce film expansion and contraction, resulting in rapid and continuous locomotion, and a generator is assembled by associating this actuator with a piezoelectric element.
Abstract: National Heart, Lung, and Blood Institute (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C)
Citations
More filters
Journal ArticleDOI
01 Jun 2018-Nature
TL;DR: 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation are reported, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson’s ratios.
Abstract: Soft materials capable of transforming between three-dimensional (3D) shapes in response to stimuli such as light, heat, solvent, electric and magnetic fields have applications in diverse areas such as flexible electronics1,2, soft robotics3,4 and biomedicine5–7. In particular, magnetic fields offer a safe and effective manipulation method for biomedical applications, which typically require remote actuation in enclosed and confined spaces8–10. With advances in magnetic field control 11 , magnetically responsive soft materials have also evolved from embedding discrete magnets 12 or incorporating magnetic particles 13 into soft compounds to generating nonuniform magnetization profiles in polymeric sheets14,15. Here we report 3D printing of programmed ferromagnetic domains in soft materials that enable fast transformations between complex 3D shapes via magnetic actuation. Our approach is based on direct ink writing 16 of an elastomer composite containing ferromagnetic microparticles. By applying a magnetic field to the dispensing nozzle while printing 17 , we reorient particles along the applied field to impart patterned magnetic polarity to printed filaments. This method allows us to program ferromagnetic domains in complex 3D-printed soft materials, enabling a set of previously inaccessible modes of transformation, such as remotely controlled auxetic behaviours of mechanical metamaterials with negative Poisson’s ratios. The actuation speed and power density of our printed soft materials with programmed ferromagnetic domains are orders of magnitude greater than existing 3D-printed active materials. We further demonstrate diverse functions derived from complex shape changes, including reconfigurable soft electronics, a mechanical metamaterial that can jump and a soft robot that crawls, rolls, catches fast-moving objects and transports a pharmaceutical dose.

1,246 citations

Journal ArticleDOI
TL;DR: A detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications, including both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.
Abstract: This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.

897 citations

Journal ArticleDOI
TL;DR: Recent advances in the areas of sensing and biosensing, drug delivery, and actuators are reviewed, and the group's work on poly(N-isopropylacrylamide)-based microgels and assemblies is highlighted.

854 citations

Journal ArticleDOI
01 Mar 2019
TL;DR: In this paper, the authors review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties.
Abstract: Thanks to their remarkable mechanical, electrical, thermal, and barrier properties, graphene-based nanocomposites have been a hot area of research in the past decade. Because of their simple top-down synthesis, graphene oxide (GO) and reduced graphene oxide (rGO) have opened new possibilities for gas barrier, membrane separation, and stimuli-response characteristics in nanocomposites. Herein, we review the synthesis techniques most commonly used to produce these graphene derivatives, discuss how synthesis affects their key material properties, and highlight some examples of nanocomposites with unique and impressive properties. We specifically highlight their performances in separation applications, stimuli-responsive materials, anti-corrosion coatings, and energy storage. Finally, we discuss the outlook and remaining challenges in the field of practical industrial-scale production and use of graphene-derivative-based polymer nanocomposites.

801 citations

Journal ArticleDOI
TL;DR: The structure, actuation mechanism, applications, and limitations of recently developed artificial muscles, including highly oriented semicrystalline polymer fibers; nanocomposite actuators; twisted nanofiber yarns; thermally activated shape-memory alloys; ionic-polymer/metal composites; dielectric-elastomer actuator; and pneumatic actuators are discussed.
Abstract: The area of artificial muscle is a highly interdisciplinary field of research that has evolved rapidly in the last 30 years. Recent advances in nanomaterial fabrication and characterization, specifically carbon nanotubes and nanowires, have had major contributions in the development of artificial muscles. However, what can artificial muscles really do for humans? This question is considered here by first examining nature's solutions to this design problem and then discussing the structure, actuation mechanism, applications, and limitations of recently developed artificial muscles, including highly oriented semicrystalline polymer fibers; nanocomposite actuators; twisted nanofiber yarns; thermally activated shape-memory alloys; ionic-polymer/metal composites; dielectric-elastomer actuators; conducting polymers; stimuli-responsive gels; piezoelectric, electrostrictive, magnetostrictive, and photostrictive actuators; photoexcited actuators; electrostatic actuators; and pneumatic actuators.

624 citations

References
More filters
Journal ArticleDOI
31 May 2002-Science
TL;DR: A group of degradable thermoplastic polymers that are able to change their shape after an increase in temperature enables bulky implants to be placed in the body through small incisions or to perform complex mechanical deformations automatically.
Abstract: The introduction of biodegradable implant materials as well as minimally invasive surgical procedures in medicine has substantially improved health care within the past few decades. This report describes a group of degradable thermoplastic polymers that are able to change their shape after an increase in temperature. Their shape-memory capability enables bulky implants to be placed in the body through small incisions or to perform complex mechanical deformations automatically. A smart degradable suture was created to illustrate the potential of these shape-memory thermoplastics in biomedical applications.

2,145 citations

Journal ArticleDOI
06 Apr 2000-Nature
TL;DR: The fabrication of active hydrogel components inside microchannels via direct photopatterning of a liquid phase greatly simplifies system construction and assembly as the functional components are fabricated in situ, and the stimuli-responsive hydrogels components perform both sensing and actuation functions.
Abstract: Hydrogels have been developed to respond to a wide variety of stimuli, but their use in macroscopic systems has been hindered by slow response times (diffusion being the rate-limiting factor governing the swelling process) However, there are many natural examples of chemically driven actuation that rely on short diffusion paths to produce a rapid response It is therefore expected that scaling down hydrogel objects to the micrometre scale should greatly improve response times At these scales, stimuli-responsive hydrogels could enhance the capabilities of microfluidic systems by allowing self-regulated flow control Here we report the fabrication of active hydrogel components inside microchannels via direct photopatterning of a liquid phase Our approach greatly simplifies system construction and assembly as the functional components are fabricated in situ, and the stimuli-responsive hydrogel components perform both sensing and actuation functions We demonstrate significantly improved response times (less than 10 seconds) in hydrogel valves capable of autonomous control of local flow

1,968 citations

Journal ArticleDOI
11 Sep 2003-Nature
TL;DR: It is shown that a single film of a liquid-crystal network containing an azobenzene chromophore can be repeatedly and precisely bent along any chosen direction by using linearly polarized light.
Abstract: Miniaturizing a simple photomechanical system could expand its range of applications. Polymer solutions and solids that contain light-sensitive molecules can undergo photo-contraction, whereby light energy is converted into mechanical energy1,2,3,4,5,6,7,8. Here we show that a single film of a liquid-crystal network containing an azobenzene chromophore can be repeatedly and precisely bent along any chosen direction by using linearly polarized light. This striking photomechanical effect results from a photoselective volume contraction and may be useful in the development of high-speed actuators for microscale or nanoscale applications, for example in microrobots in medicine or optical microtweezers.

1,887 citations

Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: Polymers containing cinnamic groups can be deformed and fixed into pre-determined shapes—such as elongated films and tubes, arches or spirals—by ultraviolet light illumination and can recover their original shape at ambient temperatures when exposed to ultraviolet light of a different wavelength.
Abstract: Materials are said to show a shape-memory effect if they can be deformed and fixed into a temporary shape, and recover their original, permanent shape only on exposure to an external stimulus. Shape-memory polymers have received increasing attention because of their scientific and technological significance. In principle, a thermally induced shape-memory effect can be activated by an increase in temperature (also obtained by heating on exposure to an electrical current or light illumination). Several papers have described light-induced changes in the shape of polymers and gels, such as contraction, bending or volume changes. Here we report that polymers containing cinnamic groups can be deformed and fixed into pre-determined shapes--such as (but not exclusively) elongated films and tubes, arches or spirals--by ultraviolet light illumination. These new shapes are stable for long time periods, even when heated to 50 degrees C, and they can recover their original shape at ambient temperatures when exposed to ultraviolet light of a different wavelength. The ability of polymers to form different pre-determined temporary shapes and subsequently recover their original shape at ambient temperatures by remote light activation could lead to a variety of potential medical and other applications.

1,807 citations

Journal ArticleDOI
14 Feb 2008-Nature
TL;DR: This work establishes a methodology for scavenging light-wind energy and body-movement energy using fabrics and presents a simple, low-cost approach that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres.
Abstract: Nanodevices don't use much energy, and if the little they do need can be scavenged from vibrations associated with foot steps, heart beats, noises and air flow, a whole range of applications in personal electronics, sensing and defence technologies opens up. Energy gathering of that type requires a technology that works at low frequency range (below 10 Hz), ideally based on soft, flexible materials. A group working at Georgia Institute of Technology has now come up with a system that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres. By entangling two fibres and brushing their associated nanowires together, mechanical energy is converted into electricity via a coupled piezoelectric-semiconductor process. This work shows a potential method for creating fabrics which scavenge energy from light winds and body movement. A self-powering nanosystem that harvests its operating energy from the environment is an attractive proposition for sensing, personal electronics and defence technologies1. This is in principle feasible for nanodevices owing to their extremely low power consumption2,3,4,5. Solar, thermal and mechanical (wind, friction, body movement) energies are common and may be scavenged from the environment, but the type of energy source to be chosen has to be decided on the basis of specific applications. Military sensing/surveillance node placement, for example, may involve difficult-to-reach locations, may need to be hidden, and may be in environments that are dusty, rainy, dark and/or in deep forest. In a moving vehicle or aeroplane, harvesting energy from a rotating tyre or wind blowing on the body is a possible choice to power wireless devices implanted in the surface of the vehicle. Nanowire nanogenerators built on hard substrates were demonstrated for harvesting local mechanical energy produced by high-frequency ultrasonic waves6,7. To harvest the energy from vibration or disturbance originating from footsteps, heartbeats, ambient noise and air flow, it is important to explore innovative technologies that work at low frequencies (such as <10 Hz) and that are based on flexible soft materials. Here we present a simple, low-cost approach that converts low-frequency vibration/friction energy into electricity using piezoelectric zinc oxide nanowires grown radially around textile fibres. By entangling two fibres and brushing the nanowires rooted on them with respect to each other, mechanical energy is converted into electricity owing to a coupled piezoelectric–semiconductor process8,9. This work establishes a methodology for scavenging light-wind energy and body-movement energy using fabrics.

1,473 citations