scispace - formally typeset
Search or ask a question
Book ChapterDOI

Bioactive Nanoparticles: A Next Generation Smart Nanomaterials for Pollution Abatement and Ecological Sustainability

About: The article was published on 2022-01-01 and is currently open access. It has received 1 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a critical review identifies major barriers preventing the widescale application of nano-enabled remediation and discusses strategies to increase the stability and activity of nanomaterials at reaction sites.
Abstract: The application of pristine nanomaterials (PNMs) for environment remediation remains challenging due to inherently high potential for aggregation, low stability, sub-optimum efficiency, and non-uniformity in size and toxicity. Conversely, modified nanomaterials (MNMs) approaches have shown significant potential to enhance the technical and economic efficiency of conventional nanoscale remediation strategies by decreasing aggregation of nanomaterials by imparting electrostatic, electrosteric or steric repulsion between particles. Furthermore, the solubility enhancing agents in MNMs have been shown to increase metal bioavailability and accelerate the breakdown of pollutants. As such, it is imperative to modify nanomaterials for unlocking their full potential and expanding their range of applications. However, there is no comprehensive review in the literature that evaluates the efficacy and environmental impact of MNMs against PNMs in the environment. This critical review identifies major barriers preventing the widescale application of nano-enabled remediation and discusses strategies to increase the stability and activity of nanomaterials at reaction sites. The higher reactivity and versatility of MNMs, along with novel properties and functionalities, enable effective removal of a range of chemical pollutants from complex environmental matrices. Additionally, MNMs show significant improvement in mobility, reactivity, and controlled and targeted release of active ingredients for in situ remediation. However, the uncertainties associated with the adverse effects of some modification agents of MNMs are not well-understood, and require further in-depth investigations. Overall, our findings show that MNMs are potentially more efficient, cost-effective, and resilient for remediation of soil and sediment, water, and air pollution than PNMs. The possible action mechanisms of MNMs have been demonstrated for different environmental compartments. Conclusively, this work provides a path forward for developing effective nano-enabled remediation technologies with MNMs, which are widely applicable to a range of environmental contamination scenarios.
References
More filters
Journal ArticleDOI
TL;DR: This review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body has adapted to defend itself against nanoparticulate intruders, while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them.
Abstract: This review is presented as a common foundation for scientists interested in nanoparticles, their origin, activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of “nano,” while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders. The reticuloendothelial system, in particular, actively neutralizes and eliminates foreign matter in the body, including viruses and nonbiological particles. Particles originating from human activities have existed for millennia, e.g., smoke from combustion and lint from garments, but the recent development of industry and combustion-based engine transportation has profoundly increased anthropogenic particulate pollution. Significantly, technological advancement has also changed the character of particulate pollution, increasing the proportion of nanometer-sized particles-“nanoparticles”-and expanding the variety of chemical compositions. Recent epidemiological studies have shown a strong correlation between particulate air pollution levels, respiratory and cardiovascular diseases, various cancers, and mortality. Adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, agglomeration state, and electromagnetic properties. Animal and human studies show that inhaled nanoparticles are less efficiently removed than larger particles by the macrophage clearance mechanisms in the lungs, causing lung damage, and that nanoparticles can translocate through the circulatory, lymphatic, and nervous systems to many tissues and organs, including the brain. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Examples of toxic effects include tissue inflammation, and altered cellular redox balance toward oxidation, causing abnormal function or cell death. The manipulation of matter at the scale of atoms, “nanotechnology,” is creating many new materials with characteristics not always easily predicted from current knowledge. Within the nearly limitless diversity of these materials, some happen to be toxic to biological systems, others are relatively benign, while others confer health benefits. Some of these materials have desirable characteristics for industrial applications, as nanostructured materials often exhibit beneficial properties, from UV absorbance in sunscreen to oil-less lubrication of motors. A rational science-based approach is needed to minimize harm caused by these materials, while supporting continued study and appropriate industrial development. As current knowledge of the toxicology of “bulk” materials may not suffice in reliably predicting toxic forms of nanoparticles, ongoing and expanded study of “nanotoxicity” will be necessary. For nanotechnologies with clearly associated health risks, intelligent design of materials and devices is needed to derive the benefits of these new technologies while limiting adverse health impacts. Human exposure to toxic nanoparticles can be reduced through identifying creation-exposure pathways of toxins, a study that may someday soon unravel the mysteries of diseases such as Parkinson’s and Alzheimer’s. Reduction in fossil fuel combustion would have a large impact on global human exposure to nanoparticles, as would limiting deforestation and desertification. While nanotoxicity is a relatively new concept to science, this review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body, in particular, has adapted to defend itself against nanoparticulate intruders.

2,598 citations

Journal ArticleDOI
TL;DR: It is observed that aqueous silver ions when exposed to the fungus Fusarium oxysporum are reduced in solution, thereby leading to the formation of an extremely stable silver hydrosol, creating the possibility of developing a rational, fungal-based method for the synthesis of nanomaterials over a range of chemical compositions, which is currently not possible by other microbe-based methods.

1,765 citations

Journal ArticleDOI
TL;DR: This review provides comprehensive analysis of data available on health effects of nanomaterials and predicts a further rise in consumer products relying on nanotechnology.
Abstract: Manmade nanoparticles range from the well-established multi-ton production of carbon black and fumed silica for applications in plastic fillers and car tyres to microgram quantities of fluorescent quantum dots used as markers in biological imaging. As nano-sciences are experiencing massive investment worldwide, there will be a further rise in consumer products relying on nanotechnology. While benefits of nanotechnology are widely publicised, the discussion of the potential effects of their widespread use in the consumer and industrial products are just beginning to emerge. This review provides comprehensive analysis of data available on health effects of nanomaterials.

1,363 citations

Journal ArticleDOI
TL;DR: This review summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide nanoparticles using natural extracts and explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems.
Abstract: In materials science, “green” synthesis has gained extensive attention as a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials/nanomaterials including metal/metal oxides nanomaterials, hybrid materials, and bioinspired materials. As such, green synthesis is regarded as an important tool to reduce the destructive effects associated with the traditional methods of synthesis for nanoparticles commonly utilized in laboratory and industry. In this review, we summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide [e.g., gold (Au), silver (Ag), copper oxide (CuO), and zinc oxide (ZnO)] nanoparticles using natural extracts. Importantly, we explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems. The stability/toxicity of nanoparticles and the associated surface engineering techniques for achieving biocompatibility are also discussed. Finally, we covered applications of such synthesized products to environmental remediation in terms of antimicrobial activity, catalytic activity, removal of pollutants dyes, and heavy metal ion sensing.

1,175 citations

Journal ArticleDOI
TL;DR: Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections, in Pseudomonas stutzeri AG259.
Abstract: One mechanism of silver resistance in microorganisms is accumulation of the metal ions in the cell. Here, we report on the phenomenon of biosynthesis of silver-based single crystals with well-defined compositions and shapes, such as equilateral triangles and hexagons, in Pseudomonas stutzeri AG259. The crystals were up to 200 nm in size and were often located at the cell poles. Transmission electron microscopy, quantitative energy-dispersive x-ray analysis, and electron diffraction established that the crystals comprise at least three different types, found both in whole cells and thin sections. These Ag-containing crystals are embedded in the organic matrix of the bacteria. Their possible potential as organic-metal composites in thin film and surface coating technology is discussed.

1,175 citations