scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biocomposites reinforced with natural fibers: 2000–2010

TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.
About: This article is published in Progress in Polymer Science.The article was published on 2012-11-01. It has received 3074 citations till now. The article focuses on the topics: Biocomposite & Transfer molding.
Citations
More filters
Journal ArticleDOI
TL;DR: Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials and is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc.
Abstract: Rising environmental concerns and depletion of petro-chemical resources has resulted in an increased interest in biorenewable polymer-based environmentally friendly materials. Among biorenewable polymers, lignin is the second most abundant and fascinating natural polymer next to cellulose. Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials. Lignin is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc. The impressive properties of lignin, such as its high abundance, low weight, environmentally friendliness and its antioxidant, antimicrobial, and biodegradable nature, along with its CO2 neutrality and reinforcing capability, make it an ideal candidate for the development of novel polymer composite materials. Considerable efforts are now being made to effectively utilize waste lignin as one ...

1,065 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the most appropriate and widely used natural fiber reinforced polymer composites (NFPCs) and their applications is presented in this paper. But, the results of the review are limited due to the high water absorption, inferior fire resistance, and lower mechanical properties of NFPCs.
Abstract: Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

1,022 citations


Cites background from "Biocomposites reinforced with natur..."

  • ...This structure gives to thermoset polymer good properties such as high flexibility for tailoring desired ultimate properties, great strength, and modulus [3, 4]....

    [...]

  • ...At 65% humidity at 21C, the equilibrium moisture content of some natural fiber can be observed in Table 4 [4]....

    [...]

  • ...The plants, which produce cellulose fibers can be classified into bast fibers (jute, flax, ramie, hemp, and kenaf), seed fibers (cotton, coir, and kapok), leaf fibers (sisal, pineapple, and abaca), grass and reed fibers (rice, corn, and wheat), and core fibers (hemp, kenaf, and jute) as well as all other kinds (wood and roots) [4]....

    [...]

  • ...Table 1: Natural fibers in the world and their world production [4]....

    [...]

  • ...Table 2: Chemical composition of some common natural fibers [4]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted.
Abstract: The growing ecological and environmental consciousness has driven efforts for development of new innovative materials for various end-use applications. Polymers synthesized from natural resources, have gained considerable research interest in the recent years. This review paper is intended to provide a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted. Various surface modification methods were incorporated to improve the fibre–matrix adhesion resulting in the enhancement of mechanical properties of the biocomposites. Moreover, an economical impact and future direction of these materials has been critically reviewed. This review concludes that the biocomposites form one of the emerging areas in polymer science that gain attention for use in various applications ranging from automobile to the building industries.

894 citations

Journal ArticleDOI
TL;DR: The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials.

775 citations

Journal ArticleDOI
TL;DR: It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants, however, still there is a need to find out the practical utility of these adsorbent on a commercial scale, leading to the improvement of pollution control.

747 citations


Additional excerpts

  • ...4 glycosidic linkages (Faruk et al., 2012; Henriksson and Berglund, 2007; O'Connell et al., 2008) (Fig....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, an integral skin/stringer panel made of Gr/Bmi(Graphite/Bismaleimide) is set for structural concept and a FPM (Fiber-Placement Machine) is constructed and suitable lay-up conditions are established.
Abstract: Studies on low cost manufacturing processes for composite outer wing of SST (Super Sonic Transport) have been undertaken since 1998. This paper presents the study plan and results of the first two years. An integral skin/stringer panel made of Gr/Bmi(Graphite/Bismaleimide) is set for structural concept. For automated fabrication of structural details, a FPM (Fiber-Placement Machine) is constructed and suitable lay-up conditions are established. To minimize distortions of a large sized composite panel, distortion sources are listed. Curing tests of simplified elements are conducted for evaluations of distortion sources. For the first step of assembly automation, an auto drilling device is constructed and evaluated.

6 citations

Journal ArticleDOI
TL;DR: In this article, different properties of rice husk reinforced polypropylene coupled by Maleic-Anhydride grafted Polypropylene (MAgPP) have been investigated.
Abstract: Different properties (tensile strength, elongation, modulus, impact strength) of rice husk (RH) reinforced polypropylene (PP) coupled by Maleic-Anhydride grafted Polypropylene (MAgPP) have been investigated. MAgPP is an effective coupling agent, not only in cellulosic-fibre filled polyolefine composites, but in rice husk flour filled polypropylene composite systems as well. It gives a utilizable construction polymer matrix composite (PMC) material even at a 40 wt.% RH filling degree. The strength and modulus increases by adding the rice husk but the elongation decreases in a non-monotonic way. Micrographs shows weak coupling in between RH and PP without MAgPP.

6 citations


"Biocomposites reinforced with natur..." refers background in this paper

  • ...Other studies have focused on: flame retardant properties of rice husk/PE composites [148], the using of rice husk as filler for rice husk/PP composites [149], the thermogravimetric analysis of rice husk filled HDPE and PP composites [150], the enhancement of the processability of rice husk/HDPE composites [151], the effect of the percentage of rice husk content, hydroxyl groups and size on the flexural, tensile, and impact properties of rice husk/polyurethane composites [152], nonlinear viscoelastic creep characterization of HDPE-rice husk composites [153], the effect of the rice husk size and composition on the injection molding processability of rice husk/PE composites [154], photocatalytic performance of a carbon/TiO2 composite with rice husk [155], the effect of different concentrations and sizes of particles of rice husk ash-in the mechanical properties of rice husk/PP composites [156], the effect of different coupling agent on rice husk/copolymer PP composites [157], dimensional properties of rice husk/unsaturated polyester composites [158], and carbon/silica composites fabricated from rice husk by means of binder-less hot-pressing [159]....

    [...]

01 Jan 2007

5 citations


"Biocomposites reinforced with natur..." refers background in this paper

  • ...Emissions do not occur; hence, there is no need for breathing protection [421]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, high strength and functional natural fiber reinforced composite materials which are fabricated using starch-based biodegradable resin and Manila hemp fiber were prepared by a conventional hot-pressing method.
Abstract: This paper deals with the characterization of high strength and functional natural fiber reinforced composite materials which are fabricated using starch-based biodegradable resin and Manila hemp fiber. Hemp fiber reinforced cross-ply composites were prepared by a conventional hot-pressing method. Their mechanical characterization was carried out by evaluating tensile strength as a function of fiber content. It can be seen that the tensile strength of the cross-ply composites was saturated over 50 wt% due to the interaction between warp and weft during the hot-pressing. However in the case of flexible weft; such as cotton thread or resin fiber, the tensile strength of the cross-ply composites almost linearly increased with increasing fiber content. The biodegradation behavior of the hemp fiber reinforced unidirectional composites was also examined by burying them into compost media. The changes in surface morphology of the specimen and in specimen weight loss were monitored for 30 days. It is apparent that the natural fiber reinforced composites showed an enhanced biodegradation speed. This enhanced biodegradation behavior seems to be derived from increased apparent surface area of the composite specimen due to the preferential biodegradation at interface between hemp fiber and biodegradable resin as well as the preferential water transportation through internal cavity in hemp fiber.

4 citations

X. H. Pan, W. Q. Jin, Y. F. Jiang, Y. Liu, F. Ai 
01 Jan 2007
TL;DR: In this paper, a two-dimensional growth of BaB2O4 single crystal from high-temperature solution was performed, and the motion of solid-liquid interface was observed in real time by differential interference microscopy.
Abstract: Two-dimensional growth of BaB2O4 single crystal from high-temperature solution was performed, and the motion of solid-liquid interface was observed in real time by differential interference microscopy. Results show that the solid-liquid interface exhibits the morphology of a vicinal face where steps with height of several microns are observed. The measurements of growth rate V and step propagating velocity υ show that both V and υ fluctuate by up to 40∼50% of their average values, respectively, under constant external conditions. Such intrinsic fluctuations with time interval of the order of one second is mainly the result of step bunching, which has been confirmed by the gradual decrease of step spacing when approaching the edge of the growing interface. Besides above fluctuations, a longer-period oscillation of V (period interval of 4∼5 seconds) is obtained for relatively rapid growth, which is triggered by the periodical alteration of step propagating directions.

4 citations