scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biocomposites reinforced with natural fibers: 2000–2010

TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.
About: This article is published in Progress in Polymer Science.The article was published on 2012-11-01. It has received 3074 citations till now. The article focuses on the topics: Biocomposite & Transfer molding.
Citations
More filters
Journal ArticleDOI
TL;DR: Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials and is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc.
Abstract: Rising environmental concerns and depletion of petro-chemical resources has resulted in an increased interest in biorenewable polymer-based environmentally friendly materials. Among biorenewable polymers, lignin is the second most abundant and fascinating natural polymer next to cellulose. Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials. Lignin is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc. The impressive properties of lignin, such as its high abundance, low weight, environmentally friendliness and its antioxidant, antimicrobial, and biodegradable nature, along with its CO2 neutrality and reinforcing capability, make it an ideal candidate for the development of novel polymer composite materials. Considerable efforts are now being made to effectively utilize waste lignin as one ...

1,065 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the most appropriate and widely used natural fiber reinforced polymer composites (NFPCs) and their applications is presented in this paper. But, the results of the review are limited due to the high water absorption, inferior fire resistance, and lower mechanical properties of NFPCs.
Abstract: Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

1,022 citations


Cites background from "Biocomposites reinforced with natur..."

  • ...This structure gives to thermoset polymer good properties such as high flexibility for tailoring desired ultimate properties, great strength, and modulus [3, 4]....

    [...]

  • ...At 65% humidity at 21C, the equilibrium moisture content of some natural fiber can be observed in Table 4 [4]....

    [...]

  • ...The plants, which produce cellulose fibers can be classified into bast fibers (jute, flax, ramie, hemp, and kenaf), seed fibers (cotton, coir, and kapok), leaf fibers (sisal, pineapple, and abaca), grass and reed fibers (rice, corn, and wheat), and core fibers (hemp, kenaf, and jute) as well as all other kinds (wood and roots) [4]....

    [...]

  • ...Table 1: Natural fibers in the world and their world production [4]....

    [...]

  • ...Table 2: Chemical composition of some common natural fibers [4]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted.
Abstract: The growing ecological and environmental consciousness has driven efforts for development of new innovative materials for various end-use applications. Polymers synthesized from natural resources, have gained considerable research interest in the recent years. This review paper is intended to provide a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted. Various surface modification methods were incorporated to improve the fibre–matrix adhesion resulting in the enhancement of mechanical properties of the biocomposites. Moreover, an economical impact and future direction of these materials has been critically reviewed. This review concludes that the biocomposites form one of the emerging areas in polymer science that gain attention for use in various applications ranging from automobile to the building industries.

894 citations

Journal ArticleDOI
TL;DR: The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials.

775 citations

Journal ArticleDOI
TL;DR: It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants, however, still there is a need to find out the practical utility of these adsorbent on a commercial scale, leading to the improvement of pollution control.

747 citations


Additional excerpts

  • ...4 glycosidic linkages (Faruk et al., 2012; Henriksson and Berglund, 2007; O'Connell et al., 2008) (Fig....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated the influence of fiber morphology of different natural fibres on composites mechanical properties and on the fiber breakage due to extrusion process and the results showed that sisal composites had the best impact properties and the longest fibres after the extrusion.

198 citations

Journal ArticleDOI
TL;DR: The structural characteristics and mechanical properties of coir fiber/polyester composites were evaluated in this paper, where the coir fibers were obtained from disregarded coconut shells that if not properly processed constitute an environmental hazard.

198 citations

Journal ArticleDOI
TL;DR: In this article, a comparative analysis of PHBV with wood fiber-PHBV biocomposites was performed by performing a two-way ANOVA on their tensile and flexural moduli in order to evaluate the effect of fiber type and content in the PHV matrix.
Abstract: Renewable resource based green biocomposites were prepared using a bacterial polyester i.e., poly(hydroxybutyrate-co-valerate) (PHBV) and natural bamboo fiber. Fabrication of the biocomposites was carried out by injection molding following extrusion compounding of PHBV and bamboo fiber with 30 or 40 wt.% fiber. The mechanical, thermo-mechanical and morphological properties of the biocomposites were evaluated. Little variation in the thermo-mechanical and impact properties was observed when the fiber content was varied. The tensile modulus of biocomposites at 40 wt.% fiber improved by 175% as compared to that of neat PHBV. The theoretical tensile modulus of the biocomposites was calculated using Christensen’s equations and compared with the experimental results. It was found to be in near approximation to the experimental data. The storage modulus was affected slightly by the variation of fiber content from 30 to 40 wt.% in biocomposites. The heat deflection temperature of PHBV increased by 9 °C at 40 wt.% of fiber reinforcement. Morphological aspects and thermal stability were studied using scanning electron microscopy and thermo-gravimetric analysis, respectively. In addition, a comparative analysis of bamboo fiber–PHBV with wood fiber–PHBV biocomposites was performed. Statistical analysis of both biocomposites was carried out by performing a two-way ANOVA on their tensile and flexural moduli in order to evaluate the effect of fiber type and content in the PHBV matrix.

196 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid composites consisting of polypropylene (PP) and short sisal fibers were prepared by melt mixing followed by compression molding, and various types of chemical treatments such as alkali treatment were applied.
Abstract: Hybrid composites consisting of polypropylene (PP) and short sisal fibers were prepared by melt mixing followed by compression molding. Various types of chemical treatments such as alkali treatment...

195 citations


"Biocomposites reinforced with natur..." refers methods in this paper

  • ...[221] used MAPP as a coupling agent for the surface modification of jute fibers....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effects of different mercerization parameters such as concentration of alkali (NaOH), temperature, and duration time along with tensile stress applied to the fibers on the structure and properties of hemp fibers were studied and judged via the cellulose I-II lattice conversion.
Abstract: In some technical areas, mainly in the automotive industry, glass fiber reinforced polymers are intended to be replaced by natural fiber reinforced polymer systems. Therefore, higher requirements will be imposed to the physical fiber properties, fiber-matrix adhesion, and the quality assurance. To improve the properties of epoxy resins (EP) and polypropylene (PP) composites, flax and hemp fibers were modified by mercerization and MAH-PP coupling agent was used for preparing the PP composites. The effects of different mercerization parameters such as concentration of alkali (NaOH), temperature, and duration time along with tensile stress applied to the fibers on the structure and properties of hemp fibers were studied and judged via the cellulose I-II lattice conversion. It was observed that the mechanical properties of the fibers can be controlled in a broad range by using appropriate mercerization parameters. Unidirectional EP composites were manufactured by the filament winding technique; at the PP matrix material, a combination with a film-stacking technique was used. The influence of mercerization parameters on the properties of EP composites was studied with hemp yarn as an example. Different macromechanical effects are shown at hemp- and flax-PP model composites with mercerized, MAH-PP-treated, or MAH-PP-treated mercerized yarns. The composites' properties were verified by tensile and flexural tests.

195 citations