scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biocomposites reinforced with natural fibers: 2000–2010

TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.
About: This article is published in Progress in Polymer Science.The article was published on 2012-11-01. It has received 3074 citations till now. The article focuses on the topics: Biocomposite & Transfer molding.
Citations
More filters
Journal ArticleDOI
TL;DR: Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials and is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc.
Abstract: Rising environmental concerns and depletion of petro-chemical resources has resulted in an increased interest in biorenewable polymer-based environmentally friendly materials. Among biorenewable polymers, lignin is the second most abundant and fascinating natural polymer next to cellulose. Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials. Lignin is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc. The impressive properties of lignin, such as its high abundance, low weight, environmentally friendliness and its antioxidant, antimicrobial, and biodegradable nature, along with its CO2 neutrality and reinforcing capability, make it an ideal candidate for the development of novel polymer composite materials. Considerable efforts are now being made to effectively utilize waste lignin as one ...

1,065 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the most appropriate and widely used natural fiber reinforced polymer composites (NFPCs) and their applications is presented in this paper. But, the results of the review are limited due to the high water absorption, inferior fire resistance, and lower mechanical properties of NFPCs.
Abstract: Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

1,022 citations


Cites background from "Biocomposites reinforced with natur..."

  • ...This structure gives to thermoset polymer good properties such as high flexibility for tailoring desired ultimate properties, great strength, and modulus [3, 4]....

    [...]

  • ...At 65% humidity at 21C, the equilibrium moisture content of some natural fiber can be observed in Table 4 [4]....

    [...]

  • ...The plants, which produce cellulose fibers can be classified into bast fibers (jute, flax, ramie, hemp, and kenaf), seed fibers (cotton, coir, and kapok), leaf fibers (sisal, pineapple, and abaca), grass and reed fibers (rice, corn, and wheat), and core fibers (hemp, kenaf, and jute) as well as all other kinds (wood and roots) [4]....

    [...]

  • ...Table 1: Natural fibers in the world and their world production [4]....

    [...]

  • ...Table 2: Chemical composition of some common natural fibers [4]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted.
Abstract: The growing ecological and environmental consciousness has driven efforts for development of new innovative materials for various end-use applications. Polymers synthesized from natural resources, have gained considerable research interest in the recent years. This review paper is intended to provide a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted. Various surface modification methods were incorporated to improve the fibre–matrix adhesion resulting in the enhancement of mechanical properties of the biocomposites. Moreover, an economical impact and future direction of these materials has been critically reviewed. This review concludes that the biocomposites form one of the emerging areas in polymer science that gain attention for use in various applications ranging from automobile to the building industries.

894 citations

Journal ArticleDOI
TL;DR: The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials.

775 citations

Journal ArticleDOI
TL;DR: It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants, however, still there is a need to find out the practical utility of these adsorbent on a commercial scale, leading to the improvement of pollution control.

747 citations


Additional excerpts

  • ...4 glycosidic linkages (Faruk et al., 2012; Henriksson and Berglund, 2007; O'Connell et al., 2008) (Fig....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of combining pyrolysis treatment with silane treatment on the porosity, dimension, morphology and hygroscopic character of silane-coated sugar cane bagasse fibers was investigated.
Abstract: Silane coating of fibers is a promising process for improving durability and adhesion of vegetable fibers used as reinforcement material in a cementitious matrix. The work presented in this paper gives an insight into the effect of combining pyrolysis treatment with silane treatment. Indeed, this study focuses on silane treatment of unpyrolyzed and pyrolyzed sugar cane bagasse fibers with an alkyltrialkoxysilane (RSi(OR′)3), S1 or a dialkyldialkoxysilane (R2Si(OR″)2), S2. The silane solutions used vary from 0.5% to 8% by volume. This paper describes the effect of two silane compounds on parameters such as the porosity, dimension, morphology and hygroscopic character of silane-coated sugar cane bagasse fibers. Preliminary studies on natural fiber reinforced composite setting time show the importance of the silane chemistry/structure, for fiber treatments with silane solution containing up to 6% (volume percent) silane. In the case of composites reinforced with unpyrolyzed bagasse fibers, setting time increases with silane coating. Combining pyrolysis and silane treatment improve the water resistance of the fibers, which become more hydrophobic.

161 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the hybridization of glass fibres with natural fibres for applications in the piping industry and propose a hybrid design for the pipe which makes use of glass woven fabrics and natural fibre mats.

161 citations

Journal ArticleDOI
TL;DR: In this paper, the synergy between natural fibers (industrial hemp) in a nano-reinforced bio-based polymer can lead to improved properties while maintaining environmental appeal, and the presented results provide an initial benchmark to identify such balance.

160 citations


"Biocomposites reinforced with natur..." refers methods in this paper

  • ...Epoxy resins, which were used as a matrix for hemp fiber reinforced composites, were studied regarding the effect of fiber architecture on the falling weight impact properties [40], properties and performances of composites for curved pipes [41], impact load performance of resin transfer molded composites [42], micro-mechanics of the composites [43], the influence of hybrid blends made of soybean oil and nanoclay [44], and the usefulness of unretted hemp as a source of fiber for biocomposites [45]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural byproducts.
Abstract: This paper presents the results of an experimental study of resistance-curve behavior and fatigue crack growth in cementitious matrices reinforced with eco-friendly natural fibers obtained from agricultural by-products. The composites include: blast furnace slag cement reinforced with pulped fibers of sisal, banana and bleached eucalyptus pulp, and ordinary Portland cement composites reinforced with bleached eucalyptus pulp. Fracture resistance (R-curve) and fatigue crack growth behavior were studied using single-edge notched bend specimens. The observed stable crack growth behavior was then related to crack/microstructure interactions that were elucidated via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Fracture mechanics models were used to quantify the observed crack-tip shielding due to crack-bridging. The implications of the results are also discussed for the design of natural fiber-reinforced composite materials for affordable housing.

160 citations

Journal ArticleDOI
TL;DR: In this article, the effects of stearic acid on the physical, tensile, moisture, thermal and micro-structural properties of the soy protein isolate (SPI)-based resin have been investigated.

159 citations