scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biocomposites reinforced with natural fibers: 2000–2010

TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.
About: This article is published in Progress in Polymer Science.The article was published on 2012-11-01. It has received 3074 citations till now. The article focuses on the topics: Biocomposite & Transfer molding.
Citations
More filters
Journal ArticleDOI
TL;DR: Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials and is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc.
Abstract: Rising environmental concerns and depletion of petro-chemical resources has resulted in an increased interest in biorenewable polymer-based environmentally friendly materials. Among biorenewable polymers, lignin is the second most abundant and fascinating natural polymer next to cellulose. Lignin is one of the three major components found in the cell walls of natural lignocellulosic materials. Lignin is widely available as a major byproduct of a number of industries involved in retrieving the polysaccharide components of plants for industrial applications, such as in paper making, ethanol production from biomass, etc. The impressive properties of lignin, such as its high abundance, low weight, environmentally friendliness and its antioxidant, antimicrobial, and biodegradable nature, along with its CO2 neutrality and reinforcing capability, make it an ideal candidate for the development of novel polymer composite materials. Considerable efforts are now being made to effectively utilize waste lignin as one ...

1,065 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the most appropriate and widely used natural fiber reinforced polymer composites (NFPCs) and their applications is presented in this paper. But, the results of the review are limited due to the high water absorption, inferior fire resistance, and lower mechanical properties of NFPCs.
Abstract: Natural fibers are getting attention from researchers and academician to utilize in polymer composites due to their ecofriendly nature and sustainability. The aim of this review article is to provide a comprehensive review of the foremost appropriate as well as widely used natural fiber reinforced polymer composites (NFPCs) and their applications. In addition, it presents summary of various surface treatments applied to natural fibers and their effect on NFPCs properties. The properties of NFPCs vary with fiber type and fiber source as well as fiber structure. The effects of various chemical treatments on the mechanical and thermal properties of natural fibers reinforcements thermosetting and thermoplastics composites were studied. A number of drawbacks of NFPCs like higher water absorption, inferior fire resistance, and lower mechanical properties limited its applications. Impacts of chemical treatment on the water absorption, tribology, viscoelastic behavior, relaxation behavior, energy absorption flames retardancy, and biodegradability properties of NFPCs were also highlighted. The applications of NFPCs in automobile and construction industry and other applications are demonstrated. It concluded that chemical treatment of the natural fiber improved adhesion between the fiber surface and the polymer matrix which ultimately enhanced physicomechanical and thermochemical properties of the NFPCs.

1,022 citations


Cites background from "Biocomposites reinforced with natur..."

  • ...This structure gives to thermoset polymer good properties such as high flexibility for tailoring desired ultimate properties, great strength, and modulus [3, 4]....

    [...]

  • ...At 65% humidity at 21C, the equilibrium moisture content of some natural fiber can be observed in Table 4 [4]....

    [...]

  • ...The plants, which produce cellulose fibers can be classified into bast fibers (jute, flax, ramie, hemp, and kenaf), seed fibers (cotton, coir, and kapok), leaf fibers (sisal, pineapple, and abaca), grass and reed fibers (rice, corn, and wheat), and core fibers (hemp, kenaf, and jute) as well as all other kinds (wood and roots) [4]....

    [...]

  • ...Table 1: Natural fibers in the world and their world production [4]....

    [...]

  • ...Table 2: Chemical composition of some common natural fibers [4]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted.
Abstract: The growing ecological and environmental consciousness has driven efforts for development of new innovative materials for various end-use applications. Polymers synthesized from natural resources, have gained considerable research interest in the recent years. This review paper is intended to provide a brief outline of work that covers in the area of biocomposites, major class of biodegradable polymers, natural fibres, as well as their manufacturing techniques and properties has been highlighted. Various surface modification methods were incorporated to improve the fibre–matrix adhesion resulting in the enhancement of mechanical properties of the biocomposites. Moreover, an economical impact and future direction of these materials has been critically reviewed. This review concludes that the biocomposites form one of the emerging areas in polymer science that gain attention for use in various applications ranging from automobile to the building industries.

894 citations

Journal ArticleDOI
TL;DR: The prime aim of this review article is to demonstrate the recent development and emerging applications of natural cellulose fibers and their polymer materials.

775 citations

Journal ArticleDOI
TL;DR: It is evident from the literature survey presented herein that modified cellulose-based adsorbents exhibit good potential for the removal of various aquatic pollutants, however, still there is a need to find out the practical utility of these adsorbent on a commercial scale, leading to the improvement of pollution control.

747 citations


Additional excerpts

  • ...4 glycosidic linkages (Faruk et al., 2012; Henriksson and Berglund, 2007; O'Connell et al., 2008) (Fig....

    [...]

References
More filters
Journal ArticleDOI
01 Mar 2003-Polymer
TL;DR: In this paper, a geometric phase analysis was applied to high-resolution transmission electron microscopy images from algal cellulose microcrystals, where the pictures were decomposed into images containing selectively the amplitude or phase information associated to selected Bragg reflections.

54 citations


"Biocomposites reinforced with natur..." refers background in this paper

  • ...In the literature there are reports of cellulose nano/microfibril extraction from diverse non-wood sources including hemp fibers [481,482], sugar beet pulp [483,484], potato pulp [485], swede root [486], bagasse [487–491], sisal [492,493], algae [494], stems of cacti [495,496], banana rachis [497], flax fibers [498,499], plantain [500], water hyacinth [501], bamboo [502], coir [503], pea hull [504], pineapple leaf [505], and wheat straw [506]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a comparative impact fatigue study has been made for the first time on the untreated and alkali treated, 35% jute fibres in the vinylester resin composites under normal room temperature and liquid nitrogen atmosphere respectively.

51 citations

Journal ArticleDOI
TL;DR: Banana fibre has been modified with silane treatments, acetylation, cyanoethylation, latex treatment and mercerization to improve the interfacial bonding with phenol formaldehyde (PF) resin Scanning electron microscopy was used to study the morphology of the banana fibre as mentioned in this paper.
Abstract: Banana fibre has been modified with silane treatments, acetylation, cyanoethylation, latex treatment and mercerization to improve the interfacial bonding with phenol formaldehyde (PF) resin Scanning electron microscopy was used to study the morphology of the banana fibre The tensile properties of the modified fibre were compared with the untreated fibre and it was found that the tensile strength and modulus of the fibre were decreased by all the treatments except cyanoethylation Tensile, flexural and impact performance of phenol formaldehyde composites reinforced with various treated fibres were analyzed and compared with that of untreated fibre composite The tensile and flexural properties of the fibre-reinforced composites were found to be increased by all the modifications except latex coating Incorporation of heat-treated, vinyl silane-treated and acetylated fibre-reinforced PF composites was found to have higher impact strength than that of untreated fibre/compsites The tensile fractographs of

51 citations

Journal ArticleDOI
TL;DR: In this paper, the alkali-treated roselle and sisal fibers were used as reinforcement fillers for thermosetting with aim of obtaining better mechanical properties and machinability of natural fiber hybrid polyester composite.
Abstract: In this work, the alkali-treated roselle and sisal fibers were used as reinforcement fillers for thermosetting matrix with aim of obtaining better mechanical properties and machinability of natural fiber hybrid polyester composite. However, their mechanical properties and machinability were compared with untreated fiber composites. The roselle and the sisal fibers were subjected to a 10% sodium hydroxide solution treatment at different duration of 2, 4, 6, and 8 h. Besides, the fractured surfaces of composite specimen were investigated using scanning electron microscopy. Drill hole profiles were analyzed using profile projector and machine vision inspection system. An improvement in strength and stiffness combined with high toughness was achieved by treating the fibers using 10% NaOH solution. POLYM. COMPOS., 31:723–731, 2010. a 2009 Society of Plastics Engineers

50 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a transparent resin transfer molding (RTM) to develop a better understanding of the mold filling process for hemp mat reinforced phenolic composites.
Abstract: Resin transfer moulding (RTM) of glass fibre reinforced polymeric composites offers the advantages of automation, low cost and versatile design of fibre reinforcement. A replacement of glass fibres with natural plant fibres as reinforcement in polymeric composites provides additional technological, economical, ecological and environmental benefits. The resin transfer mould filling process has significant effects on different aspects, such as fibre wetting out and impregnation, injection gate design, “dry patch” and void formation. Flow visualisation experiments were carried out using a transparent RTM mould to develop a better understanding of the mould filling process for hemp mat reinforced phenolic composites. The mould filling of unreinforced phenolics was characterised by a “quasi-one-dimensional steady state” flow. In the case of hemp non-woven reinforced system, the mould filling process can be considered as the flow of fluids through porous media. “Fibre washing” was a typical problem encountered during the injection process, leading to poor property uniformity. In addition, a preferential flow path was usually created near the edges and corners of the mould. The path exhibited low flow resistance and caused the resin flow front to advance much faster in these regions. The edge flow disturbed the steady flow, leading to difficulties in venting arrangement and “dry patch” formation. The edge flow and fibre washing were alleviated by reinforcement manipulation so steady state flow could be achieved. The relationships between the filling time and injection pressure and between filling time and different fibre weight fractions have been established for certain specific injection strategies.

50 citations