scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biodegradable nanoparticles for drug and gene delivery to cells and tissue

24 Feb 2003-Advanced Drug Delivery Reviews (Elsevier)-Vol. 55, Iss: 3, pp 329-347
TL;DR: Based on the above mechanism, various potential applications of nanoparticles for delivery of therapeutic agents to the cells and tissue are discussed.
About: This article is published in Advanced Drug Delivery Reviews.The article was published on 2003-02-24. It has received 3269 citations till now. The article focuses on the topics: PLGA & Gene delivery.
Citations
More filters
Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: The impact of nanoencapsulation of various disease related drugs on biodegradable nanoparticles such as PLGA, PLA, chitosan, gelatin, polycaprolactone and poly-alkyl-cyanoacrylates is highlighted.

3,116 citations

Journal ArticleDOI
TL;DR: This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases.

2,753 citations


Cites background from "Biodegradable nanoparticles for dru..."

  • ...VEGF was incorporated into PLGA nanoparticles, arguing that nanoparticle encapsulation confers several advantages over microparticle encapsulation, including a lower risk of embolization [33,177]....

    [...]

Journal ArticleDOI
04 Jan 2010-Small
TL;DR: An understanding of how synthetic and natural chemical moieties on the nanoparticle surface (in addition to nanoparticle shape and size) impact their interaction with lipid bilayers and cells is presented.
Abstract: The interaction of nanomaterials with cells and lipid bilayers is critical in many applications such as phototherapy, imaging, and drug/gene delivery. These applications require a firm control over nanoparticle-cell interactions, which are mainly dictated by surface properties of nanoparticles. This critical Review presents an understanding of how synthetic and natural chemical moieties on the nanoparticle surface (in addition to nanoparticle shape and size) impact their interaction with lipid bilayers and cells. Challenges for undertaking a systematic study to elucidate nanoparticle-cell interactions are also discussed.

2,346 citations

Journal Article
TL;DR: Multifunctional and multiplex nanoparticles are now being actively investigated and are on the horizon as the next generation of nanoparticles, facilitating personalized and tailored cancer treatment.

2,217 citations

References
More filters
Journal Article
TL;DR: The surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition, are explored and the rational approaches in the design as well as the biological performance of such constructs are assessed.
Abstract: The rapid recognition of intravenously injected colloidal carriers, such as liposomes and polymeric nanospheres from the blood by Kupffer cells, has initiated a surge of development for "Kupffer cell-evading" or long-circulating particles. Such carriers have applications in vascular drug delivery and release, site-specific targeting (passive as well as active targeting), as well as transfusion medicine. In this article we have critically reviewed and assessed the rational approaches in the design as well as the biological performance of such constructs. For engineering and design of long-circulating carriers, we have taken a lead from nature. Here, we have explored the surface mechanisms, which affords red blood cells long-circulatory lives and the ability of specific microorganisms to evade macrophage recognition. Our analysis is then centered where such strategies have been translated and fabricated to design a wide range of particulate carriers (e.g., nanospheres, liposomes, micelles, oil-in-water emulsions) with prolonged circulation and/or target specificity. With regard to the targeting issues, attention is particularly focused on the importance of physiological barriers and disease states.

3,413 citations

Journal ArticleDOI
TL;DR: Patients with CAD revealed reduced levels and functional impairment of EPCs, which correlated with risk factors for CAD, and hypertension was identified as a major independent predictor for impaired EPC migration.
Abstract: Recent studies provide increasing evidence that postnatal neovascularization involves bone marrow-derived circulating endothelial progenitor cells (EPCs). The regulation of EPCs in patients with coronary artery disease (CAD) is unclear at present. Therefore, we determined the number and functional activity of EPCs in 45 patients with CAD and 15 healthy volunteers. The numbers of isolated EPCs and circulating CD34/kinase insert domain receptor (KDR)-positive precursor cells were significantly reduced in patients with CAD by approximately 40% and 48%, respectively. To determine the influence of atherosclerotic risk factors, a risk factor score including age, sex, hypertension, diabetes, smoking, positive family history of CAD, and LDL cholesterol levels was used. The number of risk factors was significantly correlated with a reduction of EPC levels (R=-0.394, P=0.002) and CD34-/KDR-positive cells (R=-0.537, P<0.001). Analysis of the individual risk factors demonstrated that smokers had significantly reduced levels of EPCs (P<0.001) and CD34-/KDR-positive cells (P=0.003). Moreover, a positive family history of CAD was associated with reduced CD34-/KDR-positive cells (P=0.011). Most importantly, EPCs isolated from patients with CAD also revealed an impaired migratory response, which was inversely correlated with the number of risk factors (R=-0.484, P=0.002). By multivariate analysis, hypertension was identified as a major independent predictor for impaired EPC migration (P=0.043). The present study demonstrates that patients with CAD revealed reduced levels and functional impairment of EPCs, which correlated with risk factors for CAD. Given the important role of EPCs for neovascularization of ischemic tissue, the decrease of EPC numbers and activity may contribute to impaired vascularization in patients with CAD. The full text of this article is available at http://www.circresaha.org.

2,371 citations

Journal ArticleDOI
TL;DR: This chapter is a critical review of biodegradation, biocompatibility and tissue/material interactions, and selected examples of PLA and PLGA microsphere controlled release systems, and emphasis is placed on polymer and microSphere characteristics which modulate the degradation behaviour and the foreign body reaction to the microspheres.

2,351 citations

Journal ArticleDOI
TL;DR: This review discusses the various traditional and novel techniques (such as in situ microencapsulation) of preparing various drug loaded PLGA devices, with emphasis on preparing microparticles.

2,232 citations