scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

17 Jun 2014-Vol. 2014, pp 381251-381251
TL;DR: The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Abstract: Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
25 Feb 2021-Sensors
TL;DR: In this paper, an optimized measurement methodology of IPG-based carotid pulse sensing was presented for arterial impedance variation of 2137 mΩ using the optimized measurement conditions, including excitation frequency of 50 kHz, a smaller area of 2 cm2, electrode spacing of 4 cm and 1.7 cm for excitation and sensing functions, and location on the left side of the neck.
Abstract: Continuous hemodynamic monitoring is important for long-term cardiovascular healthcare, especially in hypertension. The impedance plethysmography (IPG) based carotid pulse sensing is a non-invasive diagnosis technique for measuring pulse signals and further evaluating the arterial conditions of the patient such as continuous blood pressure (BP) monitoring. To reach the high-resolution IPG-based carotid pulse detection for cardiovascular applications, this study provides an optimized measurement parameter in response to obvious pulsation from the carotid artery. The influence of the frequency of excitation current, electrode cross-sectional area, electrode arrangements, and physiological site of carotid arteries on IPG measurement resolution was thoroughly investigated for optimized parameters. In this study, the IPG system was implemented and installed on the subject’s neck above the carotid artery to evaluate the measurement parameters. The measurement results within 6 subjects obtained the arterial impedance variation of 2137 mΩ using the optimized measurement conditions, including excitation frequency of 50 kHz, a smaller area of 2 cm2, electrode spacing of 4 cm and 1.7 cm for excitation and sensing functions, and location on the left side of the neck. The significance of this study demonstrates an optimized measurement methodology of IPG-based carotid pulse sensing that greatly improves the measurement quality in cardiovascular monitoring.

10 citations

Journal ArticleDOI
Fernando Cardes1, Raziyeh Bounik1, Mario M. Modena1, A. V. Chashkin1, Margit Eckholt1 
TL;DR: In this article , the authors discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in in vitro applications.
Abstract: Due to their label-free and noninvasive nature, impedance measurements have attracted increasing interest in biological research. Advances in microfabrication and integrated-circuit technology have opened a route to using large-scale microelectrode arrays for real-time, high-spatiotemporal-resolution impedance measurements of biological samples. In this review, we discuss different methods and applications of measuring impedance for cell and tissue analysis with a focus on impedance imaging with microelectrode arrays in in vitro applications. We first introduce how electrode configurations and the frequency range of the impedance analysis determine the information that can be extracted. We then delve into relevant circuit topologies that can be used to implement impedance measurements and their characteristic features, such as resolution and data-acquisition time. Afterwards, we detail design considerations for the implementation of new impedance-imaging devices. We conclude by discussing future fields of application of impedance imaging in biomedical research, in particular applications where optical imaging is not possible, such as monitoring of ex vivo tissue slices or microelectrode-based brain implants.

10 citations

Journal ArticleDOI
TL;DR: In this article , a spatial TEER (S-TEER) is proposed to measure electrical resistance at any desired location along the chip, which can be used to measure tissue barrier integrity.
Abstract: Transepithelial/transendothelial electrical resistance (TEER) is a label-free assay that is commonly used to assess tissue barrier integrity. TEER measurement systems have been embedded in organ-on-a-chip devices to provide live readouts of barrier functionality. Yet, these systems commonly provide the impedance values which correspond to the highest level of permeability throughout the chip and cannot provide localized information on specific regions of interest. This work introduces a system that provides this essential information: a spatial-TEER (S-TEER) organ-on-a-chip platform, which incorporates moving (scanning) electrodes that can measure electrical resistance at any desired location along the chip. We demonstrate the system's capacity to obtain localized measurements of permeability in selected regions of a cell sample. We show how, in a layer with non-uniform levels of cell coverage, permeability is higher in areas with lower cell density-suggesting that the system can be used to monitor local cellular growth in vitro. To demonstrate the applicability of the chip in studies of barrier function, we characterize tissue response to TNF-α and to EGTA, agents known to harm tissue barrier integrity.

10 citations

Journal ArticleDOI
16 Apr 2021-Life
TL;DR: Sarcopenia, which is characterized by decline in muscle mass, muscle strength, and physical performance, is common in patients with chronic liver disease (CLD) and is associated with poor clinical outcomes as mentioned in this paper.
Abstract: Sarcopenia, which is characterized by decline in muscle mass, muscle strength, and physical performance, is common in patients with chronic liver disease (CLD) and is associated with poor clinical outcomes. Several consensus definitions for community-dwelling elderly people have been proposed, and these recommend the use of various tools and tests to assess muscle properties and performance. These measurement tools have also been applied in patients with CLD and have been useful for predicting prognosis. However, sarcopenia and its diagnostic criteria specific to patients with CLD have not yet been clearly defined. In addition, fluid retention and body composition should be considered when sarcopenia is assessed in patients with CLD. This review aims to introduce definitions of sarcopenia and diagnostic tools used in patients with CLD.

10 citations

Journal ArticleDOI
TL;DR: The supplementation with 10 mg-Zn/day promotes changes in the integrity of the cell membrane associated with the increase in the cellular mass of healthy children.
Abstract: The parameters derived from bioelectrical impedance, phase angle (PA) and bioelectrical impedance vector analysis (BIVA) have been associated with cell membrane integrity and body cell mass. Zinc is a micronutrient that exerts important structural functions and acts in maintaining cellular functionality. To evaluate cell integrity and body cell mass, PA and BIVA were evaluated in children orally supplemented with zinc at different concentrations. Anthropometric, bioelectrical (resistance and reactance) and serum zinc variables were collected from two randomized, triple-blind, controlled clinical trials. Sampling was composed of 71 children consisting of three groups: a control group who received a placebo and two experimental groups who received oral supplementation of 5 or 10 mg-Zn/day for three months. The three groups presented increases (p < 0.001) in the linear height and weight. In the group supplemented with 10 mg-Zn/day, there was an increase in reactance values (p = 0.036) and PA (p = 0.002), in addition to vector displacement (p < 0.001) in relation to the confidence ellipses. An increase in serum zinc concentration was found (p < 0.001) in all three groups. Whit this, the supplementation with 10 mg-Zn/day promotes changes in the integrity of the cell membrane associated with the increase in the cellular mass of healthy children.

10 citations


Cites methods from "Bioelectrical Impedance Methods for..."

  • ...Compared with other methods for this purpose, the BIA has advantages, including safety, low cost, easy-to-use, portability and practicality [1]....

    [...]

References
More filters
Book
01 Nov 2011
TL;DR: In this paper, the authors focus on topics at the forefront of electrochemical research, such as splitting water by electrolysis, splitting water with visible light, and the recent development of lithium batteries.
Abstract: This book focuses on topics at the forefront of electrochemical research. Splitting water by electrolysis; splitting water by visible light; the recent development of lithium batteries; theoretical approaches to intercalation; and fundamental concepts of electrode kinetics, particularly as applied to semiconductors are discussed. It is recommended for electrochemists, physical chemists, corrosion scientists, and those working in the fields of analytical chemistry, surface and colloid science, materials science, electrical engineering, and chemical engineering.

5,927 citations

Book
01 Jan 1971

5,389 citations

BookDOI
04 Apr 2005
Abstract: Preface. Preface to the First Edition. Contributors. Contributors to the First Edition. Chapter 1. Fundamentals of Impedance Spectroscopy (J.Ross Macdonald and William B. Johnson). 1.1. Background, Basic Definitions, and History. 1.1.1 The Importance of Interfaces. 1.1.2 The Basic Impedance Spectroscopy Experiment. 1.1.3 Response to a Small-Signal Stimulus in the Frequency Domain. 1.1.4 Impedance-Related Functions. 1.1.5 Early History. 1.2. Advantages and Limitations. 1.2.1 Differences Between Solid State and Aqueous Electrochemistry. 1.3. Elementary Analysis of Impedance Spectra. 1.3.1 Physical Models for Equivalent Circuit Elements. 1.3.2 Simple RC Circuits. 1.3.3 Analysis of Single Impedance Arcs. 1.4. Selected Applications of IS. Chapter 2. Theory (Ian D. Raistrick, Donald R. Franceschetti, and J. Ross Macdonald). 2.1. The Electrical Analogs of Physical and Chemical Processes. 2.1.1 Introduction. 2.1.2 The Electrical Properties of Bulk Homogeneous Phases. 2.1.2.1 Introduction. 2.1.2.2 Dielectric Relaxation in Materials with a Single Time Constant. 2.1.2.3 Distributions of Relaxation Times. 2.1.2.4 Conductivity and Diffusion in Electrolytes. 2.1.2.5 Conductivity and Diffusion-a Statistical Description. 2.1.2.6 Migration in the Absence of Concentration Gradients. 2.1.2.7 Transport in Disordered Media. 2.1.3 Mass and Charge Transport in the Presence of Concentration Gradients. 2.1.3.1 Diffusion. 2.1.3.2 Mixed Electronic-Ionic Conductors. 2.1.3.3 Concentration Polarization. 2.1.4 Interfaces and Boundary Conditions. 2.1.4.1 Reversible and Irreversible Interfaces. 2.1.4.2 Polarizable Electrodes. 2.1.4.3 Adsorption at the Electrode-Electrolyte Interface. 2.1.4.4 Charge Transfer at the Electrode-Electrolyte Interface. 2.1.5 Grain Boundary Effects. 2.1.6 Current Distribution, Porous and Rough Electrodes- the Effect of Geometry. 2.1.6.1 Current Distribution Problems. 2.1.6.2 Rough and Porous Electrodes. 2.2. Physical and Electrochemical Models. 2.2.1 The Modeling of Electrochemical Systems. 2.2.2 Equivalent Circuits. 2.2.2.1 Unification of Immitance Responses. 2.2.2.2 Distributed Circuit Elements. 2.2.2.3 Ambiguous Circuits. 2.2.3 Modeling Results. 2.2.3.1 Introduction. 2.2.3.2 Supported Situations. 2.2.3.3 Unsupported Situations: Theoretical Models. 2.2.3.4 Unsupported Situations: Equivalent Network Models. 2.2.3.5 Unsupported Situations: Empirical and Semiempirical Models. Chapter 3. Measuring Techniques and Data Analysis. 3.1. Impedance Measurement Techniques (Michael C. H. McKubre and Digby D. Macdonald). 3.1.1 Introduction. 3.1.2 Frequency Domain Methods. 3.1.2.1 Audio Frequency Bridges. 3.1.2.2 Transformer Ratio Arm Bridges. 3.1.2.3 Berberian-Cole Bridge. 3.1.2.4 Considerations of Potentiostatic Control. 3.1.2.5 Oscilloscopic Methods for Direct Measurement. 3.1.2.6 Phase-Sensitive Detection for Direct Measurement. 3.1.2.7 Automated Frequency Response Analysis. 3.1.2.8 Automated Impedance Analyzers. 3.1.2.9 The Use of Kramers-Kronig Transforms. 3.1.2.10 Spectrum Analyzers. 3.1.3 Time Domain Methods. 3.1.3.1 Introduction. 3.1.3.2 Analog-to-Digital (A/D) Conversion. 3.1.3.3 Computer Interfacing. 3.1.3.4 Digital Signal Processing. 3.1.4 Conclusions. 3.2. Commercially Available Impedance Measurement Systems (Brian Sayers). 3.2.1 Electrochemical Impedance Measurement Systems. 3.2.1.1 System Configuration. 3.2.1.2 Why Use a Potentiostat? 3.2.1.3 Measurements Using 2, 3 or 4-Terminal Techniques. 3.2.1.4 Measurement Resolution and Accuracy. 3.2.1.5 Single Sine and FFT Measurement Techniques. 3.2.1.6 Multielectrode Techniques. 3.2.1.7 Effects of Connections and Input Impedance. 3.2.1.8 Verification of Measurement Performance. 3.2.1.9 Floating Measurement Techniques. 3.2.1.10 Multichannel Techniques. 3.2.2 Materials Impedance Measurement Systems. 3.2.2.1 System Configuration. 3.2.2.2 Measurement of Low Impedance Materials. 3.2.2.3 Measurement of High Impedance Materials. 3.2.2.4 Reference Techniques. 3.2.2.5 Normalization Techniques. 3.2.2.6 High Voltage Measurement Techniques. 3.2.2.7 Temperature Control. 3.2.2.8 Sample Holder Considerations. 3.3. Data Analysis (J. Ross Macdonald). 3.3.1 Data Presentation and Adjustment. 3.3.1.1 Previous Approaches. 3.3.1.2 Three-Dimensional Perspective Plotting. 3.3.1.3 Treatment of Anomalies. 3.3.2 Data Analysis Methods. 3.3.2.1 Simple Methods. 3.3.2.2 Complex Nonlinear Least Squares. 3.3.2.3 Weighting. 3.3.2.4 Which Impedance-Related Function to Fit? 3.3.2.5 The Question of "What to Fit" Revisited. 3.3.2.6 Deconvolution Approaches. 3.3.2.7 Examples of CNLS Fitting. 3.3.2.8 Summary and Simple Characterization Example. Chapter 4. Applications of Impedance Spectroscopy. 4.1. Characterization of Materials (N. Bonanos, B. C. H. Steele, and E. P. Butler). 4.1.1 Microstructural Models for Impedance Spectra of Materials. 4.1.1.1 Introduction. 4.1.1.2 Layer Models. 4.1.1.3 Effective Medium Models. 4.1.1.4 Modeling of Composite Electrodes. 4.1.2 Experimental Techniques. 4.1.2.1 Introduction. 4.1.2.2 Measurement Systems. 4.1.2.3 Sample Preparation-Electrodes. 4.1.2.4 Problems Associated With the Measurement of Electrode Properties. 4.1.3 Interpretation of the Impedance Spectra of Ionic Conductors and Interfaces. 4.1.3.1 Introduction. 4.1.3.2 Characterization of Grain Boundaries by IS. 4.1.3.3 Characterization of Two-Phase Dispersions by IS. 4.1.3.4 Impedance Spectra of Unusual Two-phase Systems. 4.1.3.5 Impedance Spectra of Composite Electrodes. 4.1.3.6 Closing Remarks. 4.2. Characterization of the Electrical Response of High Resistivity Ionic and Dielectric Solid Materials by Immittance Spectroscopy (J. Ross Macdonald). 4.2.1 Introduction. 4.2.2 Types of Dispersive Response Models: Strengths and Weaknesses. 4.2.2.1 Overview. 4.2.2.2 Variable-slope Models. 4.2.2.3 Composite Models. 4.2.3 Illustration of Typical Data Fitting Results for an Ionic Conductor. 4.3. Solid State Devices (William B. Johnson and Wayne L. Worrell). 4.3.1 Electrolyte-Insulator-Semiconductor (EIS) Sensors. 4.3.2 Solid Electrolyte Chemical Sensors. 4.3.3 Photoelectrochemical Solar Cells. 4.3.4 Impedance Response of Electrochromic Materials and Devices (Gunnar A. Niklasson, Anna Karin Johsson, and Maria Stromme). 4.3.4.1 Introduction. 4.3.4.2 Materials. 4.3.4.3 Experimental Techniques. 4.3.4.4 Experimental Results on Single Materials. 4.3.4.5 Experimental Results on Electrochromic Devices. 4.3.4.6 Conclusions and Outlook. 4.3.5 Time-Resolved Photocurrent Generation (Albert Goossens). 4.3.5.1 Introduction-Semiconductors. 4.3.5.2 Steady-State Photocurrents. 4.3.5.3 Time-of-Flight. 4.3.5.4 Intensity-Modulated Photocurrent Spectroscopy. 4.3.5.5 Final Remarks. 4.4. Corrosion of Materials (Digby D. Macdonald and Michael C. H. McKubre). 4.4.1 Introduction. 4.4.2 Fundamentals. 4.4.3 Measurement of Corrosion Rate. 4.4.4 Harmonic Analysis. 4.4.5 Kramer-Kronig Transforms. 4.4.6 Corrosion Mechanisms. 4.4.6.1 Active Dissolution. 4.4.6.2 Active-Passive Transition. 4.4.6.3 The Passive State. 4.4.7 Point Defect Model of the Passive State (Digby D. Macdonald). 4.4.7.1 Introduction. 4.4.7.2 Point Defect Model. 4.4.7.3 Electrochemical Impedance Spectroscopy. 4.4.7.4 Bilayer Passive Films. 4.4.8 Equivalent Circuit Analysis (Digby D. Macdonald and Michael C. H. McKubre). 4.4.8.1 Coatings. 4.4.9 Other Impedance Techniques. 4.4.9.1 Electrochemical Hydrodynamic Impedance (EHI). 4.4.9.2 Fracture Transfer Function (FTF). 4.4.9.3 Electrochemical Mechanical Impedance. 4.5. Electrochemical Power Sources. 4.5.1 Special Aspects of Impedance Modeling of Power Sources (Evgenij Barsoukov). 4.5.1.1 Intrinsic Relation Between Impedance Properties and Power Sources Performance. 4.5.1.2 Linear Time-Domain Modeling Based on Impedance Models, Laplace Transform. 4.5.1.3 Expressing Model Parameters in Electrical Terms, Limiting Resistances and Capacitances of Distributed Elements. 4.5.1.4 Discretization of Distributed Elements, Augmenting Equivalent Circuits. 4.5.1.5 Nonlinear Time-Domain Modeling of Power Sources Based on Impedance Models. 4.5.1.6 Special Kinds of Impedance Measurement Possible with Power Sources-Passive Load Excitation and Load Interrupt. 4.5.2 Batteries (Evgenij Barsoukov). 4.5.2.1 Generic Approach to Battery Impedance Modeling. 4.5.2.2 Lead Acid Batteries. 4.5.2.3 Nickel Cadmium Batteries. 4.5.2.4 Nickel Metal-hydride Batteries. 4.5.2.5 Li-ion Batteries. 4.5.3 Impedance Behavior of Electrochemical Supercapacitors and Porous Electrodes (Brian E. Conway). 4.5.3.1 Introduction. 4.5.3.2 The Time Factor in Capacitance Charge or Discharge. 4.5.3.3 Nyquist (or Argand) Complex-Plane Plots for Representation of Impedance Behavior. 4.5.3.4 Bode Plots of Impedance Parameters for Capacitors. 4.5.3.5 Hierarchy of Equivalent Circuits and Representation of Electrochemical Capacitor Behavior. 4.5.3.6 Impedance and Voltammetry Behavior of Brush Electrode Models of Porous Electrodes. 4.5.3.7 Impedance Behavior of Supercapacitors Based on Pseudocapacitance. 4.5.3.8 Deviations of Double-layer Capacitance from Ideal Behavior: Representation by a Constant-phase Element (CPE). 4.5.4 Fuel Cells (Norbert Wagner). 4.5.4.1 Introduction. 4.5.4.2 Alkaline Fuel Cells (AFC). 4.5.4.3 Polymer Electrolyte Fuel Cells (PEFC). 4.5.4.4 Solid Oxide Fuel Cells (SOFC). Appendix. Abbreviations and Definitions of Models. References. Index.

5,212 citations

Journal ArticleDOI
TL;DR: In this article, a CO2-laser-based photoacoustic spectrometer was used to determine the temporal concentration profile of atmospheric ethene in Mexico City, and the results of this campaign were compared with data obtained in the winter of 2001.
Abstract: A CO2-laser-based photoacoustic spectrometer was used to determine the temporal concentration profile of atmospheric ethene in Mexico City. Ethene measurements were conducted at the facilities of our institute, which is located in the north of the city and next to an avenue with heavy traffic density. Ambient air from outside our laboratory was continuously pumped into the spectrometer. This campaign was performed for 24 h a day, from November 24–30, 2001. The maximum ethene levels ranged between 26 and 81 ppbV. As expected, the lowest concentrations were monitored on weekends. These data were analyzed in combination with ozone and nitrogen oxides profiles, which were permanently monitored by an air-pollution-monitoring government network. Information on the seasonal variability of ethene was obtained by comparing the results of this campaign with data obtained in the winter of 2001. In general, the ethene concentration in November was about 30% higher than in February. On weekdays, the mean dose of human...

3,242 citations

Journal ArticleDOI
TL;DR: In this article, a new analysis tool was developed to quantify the experimentally observed changes in morphology of portlandite, allowing the calculation of the relative surface energies of the crystal facets.

2,498 citations