scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

17 Jun 2014-Vol. 2014, pp 381251-381251
TL;DR: The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Abstract: Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a compact and work rapidly BIS instrumentation system has been developed at a low cost, which is designed to work in the frequency range of 100 Hz to 100 kHz.
Abstract: Bioelectric impedance spectroscopy (BIS) has been widely used to study the electrical properties of biological tissue based on the characteristics of the complex electrical impedance dispersions. One of the problems in using the BIS method is the length of time required for the data acquisition process and possibly data analysis as well. In this research, a compact and work rapidly BIS instrumentation system has been developed at a low cost. It is designed to work in the frequency range of 100 Hz to 100 kHz, which is generally used in the fields of biophysics and medical physics. The BIS instrumentation system is built using several integrated modules. The modules are an AC current source to produce a selectable injection current; a data acquisition system to measure voltage, current, and phase difference rapidly and simultaneously; and software to calculate and display measurement results in the form of Bode and Nyquist plots in real time. The developed BIS system has been validated using a simple RC circuit as the sample being tested. The average time needed in the process of data acquisition and analysis until the formation of impedance dispersion curves in the form of Bode and Nyquist plots, for 54 sample frequencies, is less than one minute. The system is able to identify R and C values of the sample with a maximum error of 1.5%. In addition, some simple application examples are also presented in this paper.

5 citations

Journal ArticleDOI
TL;DR: The variability of calibration equations depends on the variability of anthropometric parameters and the amplitudes of impedance changes which are determined by the anatomic spots where the electrodes were placed.

4 citations

Journal ArticleDOI
TL;DR: Body position affects body water distribution and in turn the accuracy of bioelectrical impedance analysis (BIA), which may consequently distort conclusions about an individual's body composition.
Abstract: Body position affects body water distribution and in turn the accuracy of bioelectrical impedance analysis (BIA), which may consequently distort conclusions about an individual's body composition.We compared body fat percentage (BFP) obtained with leg-to-leg-BIA (LL) and hand-to-leg-BIA (HL) with the reference values.The BFPs of 97 individuals were determined with an LL- (Tanita TBF 215GS, Japan) and HL- (Akern, STA/BIA, Italy) BIA-analyser and with reference skinfold thickness (SF) measurements. Each subject was measured upright with the LL-analyser, and upright and supine with the HL-analyser, both before and after 20 min of supine rest. The one-way ANOVA for repeated measures (HL-BIA), Student's t-test (LL-BIA), intraclass correlation coefficients, and Bland–Altman's plots were used for statistical analysis.BFPs determined with HL/LL BIA in upright/supine positions differ significantly. Compared to the SF method, HL-BIA mostly overestimates, while LL-BIA mostly underestimates BFP. Agreement between anthropometrically determined BFP and HL/LL-BIA determined BFP is better with HL for both sexes, and generally better in females than males.HL-BIA-determined estimates of BFP are more similar to reference values than LL-BIA. However, for both BIA methods, BIA-determined estimates of BFP are significantly affected by body position. Consequently, different BIA methods will classify approximately one fifth of subjects into the erroneous body-fat-content category, which calls for urgent standardization.

4 citations

Proceedings ArticleDOI
01 Nov 2014
TL;DR: In this article, a LabVIEW based electrode switching module (LV-ESM) is developed for a sixteen electrode EIT system and surface electrodes switching is studied with opposite and neighbouring current injection pattern.
Abstract: Surface electrodes are essentially required to be switched in a sequential fashion in electrical impedance tomography (EIT) system for current injection and voltage measurement in particular current pattern. Analog multiplexers or other electronic switches are generally used to switch the driving and sensing electrodes attached to the object boundary for current-voltage data collection. Analog multiplexers used for electrode switching are operated by the digital data generated by an electronic hardware-software module (HSM) working within the EIT electronics. Lab VIEW based National Instrumentation Hardware are found very suitable hardware-software module for digital and analog or mixed data acquisition and signal processing which can be suitably used for digital signal generation and electronic switching of EIT surface electrodes. In this direction a LabVIEW based electrode switching module (LV-ESM) is developed for a sixteen electrode EIT system and surface electrodes switching is studied with opposite and neighbouring current injection pattern. LV-ESM is tested and evaluated with sixteen electrode EIT phantoms and results demonstrated that the LV-ESM accurately switches the surface electrodes for boundary data collection.

4 citations

10 Dec 2018
TL;DR: This thesis presents a meta-modelling framework for easier non-invasive measurements for health monitoring that can be applied in the clinic, as well as in the clinical practice.
Abstract: of the master’s thesis Author Martti Vapalahti Title Health chair—easier non-invasive measurements for health monitoring Degree programme Life Science Technologies Major Biosensing and Bioelectronics Code of major ELEC3045 Supervisor Prof. Ilkka Laakso Advisor Prof. Raimo Sepponen Date 19.11.2018 Number of pages 63 Language English

4 citations


Cites background or methods from "Bioelectrical Impedance Methods for..."

  • ..., tomographies), but those mainly perform a set of multiple measurements with varying electrode positions while the principle for a single measurement in the set remains the same [4][3]....

    [...]

  • ...[4] Muscles and blood vessels are thus much better conductors than air-filled lungs or fat tissue [9]....

    [...]

  • ...[9][4] Bioelectrical spectroscopy (BIS) uses mathematical models to find the resistances R0 and R∞ mentioned earlier and then uses those in empirical equations....

    [...]

References
More filters
Book
01 Nov 2011
TL;DR: In this paper, the authors focus on topics at the forefront of electrochemical research, such as splitting water by electrolysis, splitting water with visible light, and the recent development of lithium batteries.
Abstract: This book focuses on topics at the forefront of electrochemical research. Splitting water by electrolysis; splitting water by visible light; the recent development of lithium batteries; theoretical approaches to intercalation; and fundamental concepts of electrode kinetics, particularly as applied to semiconductors are discussed. It is recommended for electrochemists, physical chemists, corrosion scientists, and those working in the fields of analytical chemistry, surface and colloid science, materials science, electrical engineering, and chemical engineering.

5,927 citations

Book
01 Jan 1971

5,389 citations

BookDOI
04 Apr 2005
Abstract: Preface. Preface to the First Edition. Contributors. Contributors to the First Edition. Chapter 1. Fundamentals of Impedance Spectroscopy (J.Ross Macdonald and William B. Johnson). 1.1. Background, Basic Definitions, and History. 1.1.1 The Importance of Interfaces. 1.1.2 The Basic Impedance Spectroscopy Experiment. 1.1.3 Response to a Small-Signal Stimulus in the Frequency Domain. 1.1.4 Impedance-Related Functions. 1.1.5 Early History. 1.2. Advantages and Limitations. 1.2.1 Differences Between Solid State and Aqueous Electrochemistry. 1.3. Elementary Analysis of Impedance Spectra. 1.3.1 Physical Models for Equivalent Circuit Elements. 1.3.2 Simple RC Circuits. 1.3.3 Analysis of Single Impedance Arcs. 1.4. Selected Applications of IS. Chapter 2. Theory (Ian D. Raistrick, Donald R. Franceschetti, and J. Ross Macdonald). 2.1. The Electrical Analogs of Physical and Chemical Processes. 2.1.1 Introduction. 2.1.2 The Electrical Properties of Bulk Homogeneous Phases. 2.1.2.1 Introduction. 2.1.2.2 Dielectric Relaxation in Materials with a Single Time Constant. 2.1.2.3 Distributions of Relaxation Times. 2.1.2.4 Conductivity and Diffusion in Electrolytes. 2.1.2.5 Conductivity and Diffusion-a Statistical Description. 2.1.2.6 Migration in the Absence of Concentration Gradients. 2.1.2.7 Transport in Disordered Media. 2.1.3 Mass and Charge Transport in the Presence of Concentration Gradients. 2.1.3.1 Diffusion. 2.1.3.2 Mixed Electronic-Ionic Conductors. 2.1.3.3 Concentration Polarization. 2.1.4 Interfaces and Boundary Conditions. 2.1.4.1 Reversible and Irreversible Interfaces. 2.1.4.2 Polarizable Electrodes. 2.1.4.3 Adsorption at the Electrode-Electrolyte Interface. 2.1.4.4 Charge Transfer at the Electrode-Electrolyte Interface. 2.1.5 Grain Boundary Effects. 2.1.6 Current Distribution, Porous and Rough Electrodes- the Effect of Geometry. 2.1.6.1 Current Distribution Problems. 2.1.6.2 Rough and Porous Electrodes. 2.2. Physical and Electrochemical Models. 2.2.1 The Modeling of Electrochemical Systems. 2.2.2 Equivalent Circuits. 2.2.2.1 Unification of Immitance Responses. 2.2.2.2 Distributed Circuit Elements. 2.2.2.3 Ambiguous Circuits. 2.2.3 Modeling Results. 2.2.3.1 Introduction. 2.2.3.2 Supported Situations. 2.2.3.3 Unsupported Situations: Theoretical Models. 2.2.3.4 Unsupported Situations: Equivalent Network Models. 2.2.3.5 Unsupported Situations: Empirical and Semiempirical Models. Chapter 3. Measuring Techniques and Data Analysis. 3.1. Impedance Measurement Techniques (Michael C. H. McKubre and Digby D. Macdonald). 3.1.1 Introduction. 3.1.2 Frequency Domain Methods. 3.1.2.1 Audio Frequency Bridges. 3.1.2.2 Transformer Ratio Arm Bridges. 3.1.2.3 Berberian-Cole Bridge. 3.1.2.4 Considerations of Potentiostatic Control. 3.1.2.5 Oscilloscopic Methods for Direct Measurement. 3.1.2.6 Phase-Sensitive Detection for Direct Measurement. 3.1.2.7 Automated Frequency Response Analysis. 3.1.2.8 Automated Impedance Analyzers. 3.1.2.9 The Use of Kramers-Kronig Transforms. 3.1.2.10 Spectrum Analyzers. 3.1.3 Time Domain Methods. 3.1.3.1 Introduction. 3.1.3.2 Analog-to-Digital (A/D) Conversion. 3.1.3.3 Computer Interfacing. 3.1.3.4 Digital Signal Processing. 3.1.4 Conclusions. 3.2. Commercially Available Impedance Measurement Systems (Brian Sayers). 3.2.1 Electrochemical Impedance Measurement Systems. 3.2.1.1 System Configuration. 3.2.1.2 Why Use a Potentiostat? 3.2.1.3 Measurements Using 2, 3 or 4-Terminal Techniques. 3.2.1.4 Measurement Resolution and Accuracy. 3.2.1.5 Single Sine and FFT Measurement Techniques. 3.2.1.6 Multielectrode Techniques. 3.2.1.7 Effects of Connections and Input Impedance. 3.2.1.8 Verification of Measurement Performance. 3.2.1.9 Floating Measurement Techniques. 3.2.1.10 Multichannel Techniques. 3.2.2 Materials Impedance Measurement Systems. 3.2.2.1 System Configuration. 3.2.2.2 Measurement of Low Impedance Materials. 3.2.2.3 Measurement of High Impedance Materials. 3.2.2.4 Reference Techniques. 3.2.2.5 Normalization Techniques. 3.2.2.6 High Voltage Measurement Techniques. 3.2.2.7 Temperature Control. 3.2.2.8 Sample Holder Considerations. 3.3. Data Analysis (J. Ross Macdonald). 3.3.1 Data Presentation and Adjustment. 3.3.1.1 Previous Approaches. 3.3.1.2 Three-Dimensional Perspective Plotting. 3.3.1.3 Treatment of Anomalies. 3.3.2 Data Analysis Methods. 3.3.2.1 Simple Methods. 3.3.2.2 Complex Nonlinear Least Squares. 3.3.2.3 Weighting. 3.3.2.4 Which Impedance-Related Function to Fit? 3.3.2.5 The Question of "What to Fit" Revisited. 3.3.2.6 Deconvolution Approaches. 3.3.2.7 Examples of CNLS Fitting. 3.3.2.8 Summary and Simple Characterization Example. Chapter 4. Applications of Impedance Spectroscopy. 4.1. Characterization of Materials (N. Bonanos, B. C. H. Steele, and E. P. Butler). 4.1.1 Microstructural Models for Impedance Spectra of Materials. 4.1.1.1 Introduction. 4.1.1.2 Layer Models. 4.1.1.3 Effective Medium Models. 4.1.1.4 Modeling of Composite Electrodes. 4.1.2 Experimental Techniques. 4.1.2.1 Introduction. 4.1.2.2 Measurement Systems. 4.1.2.3 Sample Preparation-Electrodes. 4.1.2.4 Problems Associated With the Measurement of Electrode Properties. 4.1.3 Interpretation of the Impedance Spectra of Ionic Conductors and Interfaces. 4.1.3.1 Introduction. 4.1.3.2 Characterization of Grain Boundaries by IS. 4.1.3.3 Characterization of Two-Phase Dispersions by IS. 4.1.3.4 Impedance Spectra of Unusual Two-phase Systems. 4.1.3.5 Impedance Spectra of Composite Electrodes. 4.1.3.6 Closing Remarks. 4.2. Characterization of the Electrical Response of High Resistivity Ionic and Dielectric Solid Materials by Immittance Spectroscopy (J. Ross Macdonald). 4.2.1 Introduction. 4.2.2 Types of Dispersive Response Models: Strengths and Weaknesses. 4.2.2.1 Overview. 4.2.2.2 Variable-slope Models. 4.2.2.3 Composite Models. 4.2.3 Illustration of Typical Data Fitting Results for an Ionic Conductor. 4.3. Solid State Devices (William B. Johnson and Wayne L. Worrell). 4.3.1 Electrolyte-Insulator-Semiconductor (EIS) Sensors. 4.3.2 Solid Electrolyte Chemical Sensors. 4.3.3 Photoelectrochemical Solar Cells. 4.3.4 Impedance Response of Electrochromic Materials and Devices (Gunnar A. Niklasson, Anna Karin Johsson, and Maria Stromme). 4.3.4.1 Introduction. 4.3.4.2 Materials. 4.3.4.3 Experimental Techniques. 4.3.4.4 Experimental Results on Single Materials. 4.3.4.5 Experimental Results on Electrochromic Devices. 4.3.4.6 Conclusions and Outlook. 4.3.5 Time-Resolved Photocurrent Generation (Albert Goossens). 4.3.5.1 Introduction-Semiconductors. 4.3.5.2 Steady-State Photocurrents. 4.3.5.3 Time-of-Flight. 4.3.5.4 Intensity-Modulated Photocurrent Spectroscopy. 4.3.5.5 Final Remarks. 4.4. Corrosion of Materials (Digby D. Macdonald and Michael C. H. McKubre). 4.4.1 Introduction. 4.4.2 Fundamentals. 4.4.3 Measurement of Corrosion Rate. 4.4.4 Harmonic Analysis. 4.4.5 Kramer-Kronig Transforms. 4.4.6 Corrosion Mechanisms. 4.4.6.1 Active Dissolution. 4.4.6.2 Active-Passive Transition. 4.4.6.3 The Passive State. 4.4.7 Point Defect Model of the Passive State (Digby D. Macdonald). 4.4.7.1 Introduction. 4.4.7.2 Point Defect Model. 4.4.7.3 Electrochemical Impedance Spectroscopy. 4.4.7.4 Bilayer Passive Films. 4.4.8 Equivalent Circuit Analysis (Digby D. Macdonald and Michael C. H. McKubre). 4.4.8.1 Coatings. 4.4.9 Other Impedance Techniques. 4.4.9.1 Electrochemical Hydrodynamic Impedance (EHI). 4.4.9.2 Fracture Transfer Function (FTF). 4.4.9.3 Electrochemical Mechanical Impedance. 4.5. Electrochemical Power Sources. 4.5.1 Special Aspects of Impedance Modeling of Power Sources (Evgenij Barsoukov). 4.5.1.1 Intrinsic Relation Between Impedance Properties and Power Sources Performance. 4.5.1.2 Linear Time-Domain Modeling Based on Impedance Models, Laplace Transform. 4.5.1.3 Expressing Model Parameters in Electrical Terms, Limiting Resistances and Capacitances of Distributed Elements. 4.5.1.4 Discretization of Distributed Elements, Augmenting Equivalent Circuits. 4.5.1.5 Nonlinear Time-Domain Modeling of Power Sources Based on Impedance Models. 4.5.1.6 Special Kinds of Impedance Measurement Possible with Power Sources-Passive Load Excitation and Load Interrupt. 4.5.2 Batteries (Evgenij Barsoukov). 4.5.2.1 Generic Approach to Battery Impedance Modeling. 4.5.2.2 Lead Acid Batteries. 4.5.2.3 Nickel Cadmium Batteries. 4.5.2.4 Nickel Metal-hydride Batteries. 4.5.2.5 Li-ion Batteries. 4.5.3 Impedance Behavior of Electrochemical Supercapacitors and Porous Electrodes (Brian E. Conway). 4.5.3.1 Introduction. 4.5.3.2 The Time Factor in Capacitance Charge or Discharge. 4.5.3.3 Nyquist (or Argand) Complex-Plane Plots for Representation of Impedance Behavior. 4.5.3.4 Bode Plots of Impedance Parameters for Capacitors. 4.5.3.5 Hierarchy of Equivalent Circuits and Representation of Electrochemical Capacitor Behavior. 4.5.3.6 Impedance and Voltammetry Behavior of Brush Electrode Models of Porous Electrodes. 4.5.3.7 Impedance Behavior of Supercapacitors Based on Pseudocapacitance. 4.5.3.8 Deviations of Double-layer Capacitance from Ideal Behavior: Representation by a Constant-phase Element (CPE). 4.5.4 Fuel Cells (Norbert Wagner). 4.5.4.1 Introduction. 4.5.4.2 Alkaline Fuel Cells (AFC). 4.5.4.3 Polymer Electrolyte Fuel Cells (PEFC). 4.5.4.4 Solid Oxide Fuel Cells (SOFC). Appendix. Abbreviations and Definitions of Models. References. Index.

5,212 citations

Journal ArticleDOI
TL;DR: In this article, a CO2-laser-based photoacoustic spectrometer was used to determine the temporal concentration profile of atmospheric ethene in Mexico City, and the results of this campaign were compared with data obtained in the winter of 2001.
Abstract: A CO2-laser-based photoacoustic spectrometer was used to determine the temporal concentration profile of atmospheric ethene in Mexico City. Ethene measurements were conducted at the facilities of our institute, which is located in the north of the city and next to an avenue with heavy traffic density. Ambient air from outside our laboratory was continuously pumped into the spectrometer. This campaign was performed for 24 h a day, from November 24–30, 2001. The maximum ethene levels ranged between 26 and 81 ppbV. As expected, the lowest concentrations were monitored on weekends. These data were analyzed in combination with ozone and nitrogen oxides profiles, which were permanently monitored by an air-pollution-monitoring government network. Information on the seasonal variability of ethene was obtained by comparing the results of this campaign with data obtained in the winter of 2001. In general, the ethene concentration in November was about 30% higher than in February. On weekdays, the mean dose of human...

3,242 citations

Journal ArticleDOI
TL;DR: In this article, a new analysis tool was developed to quantify the experimentally observed changes in morphology of portlandite, allowing the calculation of the relative surface energies of the crystal facets.

2,498 citations