scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

17 Jun 2014-Vol. 2014, pp 381251-381251
TL;DR: The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Abstract: Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: A deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Abstract: Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.

680 citations

Journal ArticleDOI
TL;DR: In this article, an updated review of EIS main implementations and applications is presented, as well as a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well and inorganic materials.
Abstract: . Electrical impedance spectroscopy (EIS), in which a sinusoidal test voltage or current is applied to the sample under test to measure its impedance over a suitable frequency range, is a powerful technique to investigate the electrical properties of a large variety of materials. In practice, the measured impedance spectra, usually fitted with an equivalent electrical model, represent an electrical fingerprint of the sample providing an insight into its properties and behavior. EIS is used in a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well as inorganic materials. This paper presents an updated review of EIS main implementations and applications.

234 citations


Cites background from "Bioelectrical Impedance Methods for..."

  • ...Fat tissues are characterized by low electrical conductivity (i.e., high impedance values) while lean tissues present high electrical conductivity (i.e., low impedance values) due to the high content of electrolytes (Kanti Bera, 2014)....

    [...]

Journal ArticleDOI
TL;DR: The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpingance to the sources of noise and artifacts.
Abstract: This work develops a thorough review of bioimpedance systems for healthcare applications. The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpedance to the sources of noise and artifacts. Bioimpedance applications such as body composition assessment, impedance cardiography (ICG), transthoracic impedance pneumography, electrical impedance tomography (EIT), and skin conductance are described and analyzed. A breakdown of recent advances and future challenges of bioimpedance is also performed, addressing topics such as transducers for biosensors and Lab-on-Chip technology, measurements in implantable systems, characterization of new parameters and substances, and novel bioimpedance applications.

87 citations

References
More filters
Journal ArticleDOI
TL;DR: The development of existing tomography scanners will improve the return from sawlogs and will assist in understanding the structure of wood down to the submillimeter scale.

40 citations

Book ChapterDOI
25 Jan 2012
TL;DR: In the automotive industry, cathodic electrocoating is widely used as a primary layer coating in the corrosion protection system as discussed by the authors, which has many advantages including high throw power, high corrosion protection and coating transfer coefficient (>95%), auto-limitation of the coating thickness, environmentally friendly due to an aqueous suspension medium and an easy industrial automation.
Abstract: Thanks to their barrier properties against corrosive species, organic coatings are often used to protect metals against corrosion. In the automotive industry, cathodic electrocoating is widely used as a primary layer coating in the corrosion protection system [1-3]. This deposition method has many advantages including high throw power, high corrosion protection and coating transfer coefficient (>95%), auto-limitation of the coating thickness, environmentally friendly due to an aqueous suspension medium and an easy industrial automation [4, 5]. This coating can also be applied on each metal composing the car body.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the authors have jointly applied microwave remote sensing imaging and ground-based geophysical methodologies for investigating ground deformation, in particular, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique referred to as Small BAseline Subset (SBAS) algorithm and the Electrical Resistivity Tomography (ERT) method have been applied.

39 citations

Journal ArticleDOI
TL;DR: The most sensitive EIS parameters for detecting the differences between viable and non-viable seeds were the capacitance log(C2), the resistance R2, the resistance ratio R2/R1 and the apex ratio, which all represent specific features of the impedance spectrum.
Abstract: A method, electrical impedance spectroscopy (EIS), is introduced to study seed viability non-destructively. Snap bean (Phaseolus vulgaris L.) seeds were studied by EIS to determine the most sensitive EIS parameter(s) and the optimal range of moisture content (MC) for separation of viable and non-viable seeds. Hydrated seeds exhibited two impedance arcs in the complex plane at the frequency range from 60 Hz to 8 MHz, and impedance spectra of viable and non-viable seeds differed. The hydrated seeds were best-modelled by an equivalent electrical circuit with two distributed circuit elements in series with a resistor (Voigt model). Moisture content and seed viability had strong effects on the EIS parameters. The most sensitive EIS parameters for detecting the differences between viable and non-viable seeds were the capacitance log(C 2 ), the resistance R 2 , the resistance ratio R 2 /R 1 and the apex ratio, which all represent specific features of the impedance spectrum. The highest differentiation in the EIS parameters between the viable and non-viable seeds occurred in partially imbibed seeds between MC of 40 and 45% (fresh weight basis).

38 citations