scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

17 Jun 2014-Vol. 2014, pp 381251-381251
TL;DR: The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Abstract: Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: A deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Abstract: Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.

680 citations

Journal ArticleDOI
TL;DR: In this article, an updated review of EIS main implementations and applications is presented, as well as a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well and inorganic materials.
Abstract: . Electrical impedance spectroscopy (EIS), in which a sinusoidal test voltage or current is applied to the sample under test to measure its impedance over a suitable frequency range, is a powerful technique to investigate the electrical properties of a large variety of materials. In practice, the measured impedance spectra, usually fitted with an equivalent electrical model, represent an electrical fingerprint of the sample providing an insight into its properties and behavior. EIS is used in a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well as inorganic materials. This paper presents an updated review of EIS main implementations and applications.

234 citations


Cites background from "Bioelectrical Impedance Methods for..."

  • ...Fat tissues are characterized by low electrical conductivity (i.e., high impedance values) while lean tissues present high electrical conductivity (i.e., low impedance values) due to the high content of electrolytes (Kanti Bera, 2014)....

    [...]

Journal ArticleDOI
TL;DR: The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpingance to the sources of noise and artifacts.
Abstract: This work develops a thorough review of bioimpedance systems for healthcare applications. The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpedance to the sources of noise and artifacts. Bioimpedance applications such as body composition assessment, impedance cardiography (ICG), transthoracic impedance pneumography, electrical impedance tomography (EIT), and skin conductance are described and analyzed. A breakdown of recent advances and future challenges of bioimpedance is also performed, addressing topics such as transducers for biosensors and Lab-on-Chip technology, measurements in implantable systems, characterization of new parameters and substances, and novel bioimpedance applications.

87 citations

References
More filters
Book
01 Jan 2008
TL;DR: In this paper, the authors provide guidelines for experimental design, discuss the relevance of accuracy contour plots to wiring and instrumentation selection, and emphasize the importance of the Kramers-Kronig relations to data validation and analysis.
Abstract: Electrochemical impedance spectroscopy (EIS) is a powerful tool to investigate properties of materials and electrode reactions. This Primer provides a guide to the use of EIS with a comparison to other electrochemical techniques. The analysis of impedance data for reduction of ferricyanide in a KCl supporting electrolyte is used to demonstrate the error structure for impedance measurements, the use of measurement and process models, as well as the sensitivity of impedance to the evolution of electrode properties. This Primer provides guidelines for experimental design, discusses the relevance of accuracy contour plots to wiring and instrumentation selection, and emphasizes the importance of the Kramers-Kronig relations to data validation and analysis. Applications of EIS to battery performance, metal and alloy corrosion, and electrochemical biosensors are highlighted. Electrochemical impedance measurements depend on both the mechanism under investigation and extrinsic parameters, such as the electrode geometry. Experimental complications are discussed, including the influence of nonstationary behaviour at low frequencies and the need for reference electrodes. Finally, emerging trends in experimental and interpretation approaches are also described.

1,497 citations

Book
18 Jun 2014
TL;DR: In this paper, the fundamental processes of diffusion and faradaic reaction at electrodes are discussed and a review of the applications of these processes can be found in a forthcoming volume in this series.
Abstract: Electrochemical impedance spectroscopy has become a mature and well-understood technique. It is now possible to acquire, validate, and quantitatively interpret the experimental impedances. This chapter has been addressed to understanding the fundamental processes of diffusion and faradaic reaction at electrodes. However, the most difficult problem in EIS is modeling the electrode processes, which is where most of the problems and errors arise. There is an almost infinite variety of different reactions and interfaces that can be studied (corrosion, coatings, conducting polymers, batteries and fuel cells, semiconductors, electrocatalytic reactions, chemical reactions coupled with faradaic processes, etc.) and the main effort is now being applied to understanding and analyzing these processes. These applications will be the subject of a second review in a forthcoming volume in this series.

1,270 citations

Book
29 Dec 1998
TL;DR: In this paper, the authors present a characterization of measurement characteristics, including time and frequency measurements, as well as the properties of different types of measurements, such as thermal, chemical, and signal processing.
Abstract: Measurement Characteristics. Spatial Variables Measurement. Time and Frequency Measurement. Mechanical Variables Measurement Solid. Mechanical Variables Measurement Fluid. Mechanical Variables Measurement Thermal. Electromagnetic Variables Measurement. Optical Variables Measurement. Radiation Measurement. Chemical Variables Measurement. Biomedical Variables Measurement. Signal Processing. Displays. Control. Appendices. Index.

1,010 citations

BookDOI
31 Dec 2004
TL;DR: This chapter discusses Imaging of the Thorax by EIT EIT of Brain Function Breast Cancer Screening with EIT applications of EIT in the Gastrointestinal Tract (GIT) Other Clinical Applications of Eit.
Abstract: INTRODUCTION PART 1 ALGORITHMS The Reconstruction Problem PART 2 HARDWARE EIT Instrumentation PART 3 APPLICATIONS Imaging of the Thorax by EIT EIT of Brain Function Breast Cancer Screening with EIT Applications of EIT in the Gastrointestinal Tract (GIT) Other Clinical Applications of EIT PART 4 NEW DIRECTIONS Magnetic Induction Tomography Magnetic Resonance Electrical Impedance Tomography (MREIT) Electrical Tomography for Industrial Applications EIT: The View from Sheffield EIT for Medical Applications at Oxford Brookes 1985-2003 The Rensselaer Experience APPENDIX A BRIEF INTRODUCTION TO BIOIMPEDANCE APPENDIX B NONTECHNICAL INTRODUCTION TO EIT

837 citations


"Bioelectrical Impedance Methods for..." refers background in this paper

  • ...Electrical impedance based noninvasive tissue characterizing techniques like bioelectrical impedance analysis (BIA) [7–21], electrical impedance spectroscopy (EIS) [22–32], electrical impedance plethysmography (IPG) [33, 34], impedance cardiography (ICG) [35–37], and electrical impedance tomography (EIT) [38, 39] are being used to study the frequency response of the electrical impedance of biological tissues....

    [...]

01 Jan 2013

833 citations


"Bioelectrical Impedance Methods for..." refers methods in this paper

  • ...EIT has been applied in a number of research areas such as medical imaging clinical diagnosis [146–152], chemical engineering [153], industrial process application [154, 155], material engineering [156], microbiology and biotechnology [157, 158], nondestructive testing (NDT) in manufacturing technology [159], civil engineering [160], earth science and geophysics and geoscience [161], defense fields [162], archaeology [163], oceanography [164], environmental engineering [165], and other fields of applied science, engineering and technologies [166]....

    [...]