scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review.

17 Jun 2014-Vol. 2014, pp 381251-381251
TL;DR: The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.
Abstract: Under the alternating electrical excitation, biological tissues produce a complex electrical impedance which depends on tissue composition, structures, health status, and applied signal frequency, and hence the bioelectrical impedance methods can be utilized for noninvasive tissue characterization. As the impedance responses of these tissue parameters vary with frequencies of the applied signal, the impedance analysis conducted over a wide frequency band provides more information about the tissue interiors which help us to better understand the biological tissues anatomy, physiology, and pathology. Over past few decades, a number of impedance based noninvasive tissue characterization techniques such as bioelectrical impedance analysis (BIA), electrical impedance spectroscopy (EIS), electrical impedance plethysmography (IPG), impedance cardiography (ICG), and electrical impedance tomography (EIT) have been proposed and a lot of research works have been conducted on these methods for noninvasive tissue characterization and disease diagnosis. In this paper BIA, EIS, IPG, ICG, and EIT techniques and their applications in different fields have been reviewed and technical perspective of these impedance methods has been presented. The working principles, applications, merits, and demerits of these methods has been discussed in detail along with their other technical issues followed by present status and future trends.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
01 Jan 1997
TL;DR: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems and discusses the main points in the application to electromagnetic design, including formulation and implementation.
Abstract: This chapter introduces the finite element method (FEM) as a tool for solution of classical electromagnetic problems. Although we discuss the main points in the application of the finite element method to electromagnetic design, including formulation and implementation, those who seek deeper understanding of the finite element method should consult some of the works listed in the bibliography section.

1,820 citations

Journal ArticleDOI
TL;DR: A deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Abstract: Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.

680 citations

Journal ArticleDOI
TL;DR: In this article, an updated review of EIS main implementations and applications is presented, as well as a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well and inorganic materials.
Abstract: . Electrical impedance spectroscopy (EIS), in which a sinusoidal test voltage or current is applied to the sample under test to measure its impedance over a suitable frequency range, is a powerful technique to investigate the electrical properties of a large variety of materials. In practice, the measured impedance spectra, usually fitted with an equivalent electrical model, represent an electrical fingerprint of the sample providing an insight into its properties and behavior. EIS is used in a broad range of applications as a quick and easily automated technique to characterize solid, liquid, semiliquid, organic as well as inorganic materials. This paper presents an updated review of EIS main implementations and applications.

234 citations


Cites background from "Bioelectrical Impedance Methods for..."

  • ...Fat tissues are characterized by low electrical conductivity (i.e., high impedance values) while lean tissues present high electrical conductivity (i.e., low impedance values) due to the high content of electrolytes (Kanti Bera, 2014)....

    [...]

Journal ArticleDOI
TL;DR: The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpingance to the sources of noise and artifacts.
Abstract: This work develops a thorough review of bioimpedance systems for healthcare applications. The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpedance to the sources of noise and artifacts. Bioimpedance applications such as body composition assessment, impedance cardiography (ICG), transthoracic impedance pneumography, electrical impedance tomography (EIT), and skin conductance are described and analyzed. A breakdown of recent advances and future challenges of bioimpedance is also performed, addressing topics such as transducers for biosensors and Lab-on-Chip technology, measurements in implantable systems, characterization of new parameters and substances, and novel bioimpedance applications.

87 citations

References
More filters
Dissertation
01 Jan 2011

5 citations


"Bioelectrical Impedance Methods for..." refers methods in this paper

  • ...Therefore the EIS has been suitably applied in several fields such as electrochemistry and chemical engineering [54, 56–61], material engineering [62–71], biomedical engineering [72–76], civil engineering [77–79], wood science [80, 81], plant physiology [82–84], microfluidics [85, 86], material engineering [87–90], fuel cell technology [91], andMEMS and thin films [92, 93] and so on....

    [...]

Journal ArticleDOI
TL;DR: The range of pulsatile arm and finger blood flow, measured by electrical impedance plethysmography, has been investigated in a hospital ward and was found to be too wide to be used as a standard for identifying single blood flow readings as being abnormal.

4 citations


"Bioelectrical Impedance Methods for..." refers methods in this paper

  • ...Presently the IPG is being studied for finger plethysmography [234, 235] by J....

    [...]

Book ChapterDOI
01 Aug 2011
TL;DR: In this article, the voltage potential at each of the detector electrodes is measured, one at a time, by the measurement electronics to determine the inter-electrode capacitance.
Abstract: Electrical capacitance tomography (ECT) is a technique invented in the 1980’s to determine material distribution in the interior of an enclosed environment by means of external capacitance measurements (Huang et al., 1989a, 1992b). In a typical ECT system, 8 to 16 electrodes (Yang, 2010) are symmetrically mounted inside or outside a cylindrical container, as illustrated in Figure 1. During the period of a scanning frame, an excitation signal is applied to one of the electrodes and the remaining electrodes are acting as detector electrodes. Subsequently, the voltage potential at each of the detector electrodes is measured, one at a time, by the measurement electronics to determine the inter-electrode capacitance. Changes in these measured capacitance values indicate the variation of material distribution within the container, e.g. air bubbles translating within an oil flow. An image of permittivity distribution directly representing the materials distribution can be retrieved from the capacitance data through a back-projection algorithm (Isaksen, 1996).While image resolution associated with the ECT technique is lower than other tomographic techniques such as CT or optical imaging, it is advantageous in terms of its non-intrusive nature, portability, robustness, and no exposure to radiation hazard.

4 citations


"Bioelectrical Impedance Methods for..." refers methods in this paper

  • ...In some applications the electrical permittivity of the DUT is reconstructed from the voltage current data collected at the boundary and the imaging modality is called electrical capacitance tomography (ECT) [125, 133, 167, 168] which is generally used in industrial process application and mechanical and material engineering....

    [...]

  • ...In some applications the electrical permittivity of the DUT is reconstructed from the voltage current data collected at the boundary and the imaging modality is called electrical capacitance tomography (ECT) [125, 133, 167, 168] which is...

    [...]

  • ...EIT is a low cost, portable, fast, noninvasive, nonionizing, and radiation free technique, and hence it is found advantageous in several fields of applications application compared to the other computed tomographic methods like X-ray CT [134–136], X-raymammography [137],MRI [138, 139], SPECT [140, 141], PET [142, 143], ultrasound [144, 145], and so forth....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effect of bark stripping on electrical impedance parameters of cork oak young leaves between 40Hz and 100 kHz was examined and a new application of the electrical impedances spectroscopy (EIS) in plant science.
Abstract: is study examined the eect of bark stripping on the electrical impedance parameters of cork oak young leaves between 40Hz and 100 kHz. � is was a new application of the electrical impedances spectroscopy (EIS) in plant science. Various stripping coecients (CD) were applied on the trees. Bark stripping is expected to aect water metabolism of leaves and therefore changes in the EIS parameters are expected as well. Single-DCE (ZARC) model was used as equivalent circuit for leaves. Several electrophysiological parameters of this model were compared with moisture content (MC) of the leaves. Intracellular resistance (R i ), extracellular resistance (R e ) and relaxation time (�) of the leaves increased during 14 days aer stripping while the distributed coecient (�) and MC decreased. Signicant correlation between EIS parameters, MC and trees treatments were found.

4 citations

Journal ArticleDOI

4 citations


"Bioelectrical Impedance Methods for..." refers background or methods in this paper

  • ...A basic EIT system contains three parts (Figure 15): EIT instrumentation [115–123], a PC with reconstruction algorithm [124–133], and an array of EIT sensors or surface electrodes [57, 102, 106, 110, 186] attached to a practical phantom or a subject under test (SUT)....

    [...]

  • ...In EIT, an array of sensors or surface electrodes [57, 102, 106, 110, 186] is attached to the boundary of the DUT....

    [...]