scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence

TL;DR: In this paper, the carbon and hydrogen stable isotope composition of the methane as a function of the coexisting carbon dioxide and formation water precursors is used to distinguish two primary methanogenic pathways.
About: This article is published in Geochimica et Cosmochimica Acta.The article was published on 1986-05-01. It has received 1756 citations till now. The article focuses on the topics: Anaerobic oxidation of methane & Acetate fermentation.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the major dissolved carbon species in diagenetic settings are represented by the two carbon redox endmembers CH4 and CO2, and they can be tracked with the aid of carbon ( 13 C / 12 C ) and hydrogen ( D/H≡ 2 H/ 1 H ) isotopes.

2,589 citations


Cites background or methods from "Biogenic methane formation in marin..."

  • ...Whiticar et al., 1986 0.25, 321 ....

    [...]

  • ...L3 shows the typical d D –d D relationship observed by Whiticar et al. 1986 for freshwaterH O CH2 4 Ž ....

    [...]

  • ...Whiticar et al., 1986 ....

    [...]

  • ...HorniŽ .brook et al. 1997 reported that their natural wetland Ž .studies fit the model of Whiticar et al. 1986 ....

    [...]

  • ...Whiticar et al. 1986 used the combination of C and H isotope data of CH , together with those4 of the coexisting bicarbonate and water species, to define compositional fields for the different methanogenic pathways....

    [...]

MonographDOI
16 Dec 2004
TL;DR: The second edition of The Biomarker Guide as mentioned in this paper provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes.
Abstract: The second edition of The Biomarker Guide is a fully updated and expanded version of this essential reference. Now in two volumes, it provides a comprehensive account of the role that biomarker technology plays both in petroleum exploration and in understanding Earth history and processes. Biomarkers and Isotopes in the Environment and Human History details the origins of biomarkers and introduces basic chemical principles relevant to their study. It discusses analytical techniques, and applications of biomarkers to environmental and archaeological problems. The Biomarker Guide is an invaluable resource for geologists, petroleum geochemists, biogeochemists, environmental scientists and archaeologists.

2,163 citations

BookDOI
TL;DR: In this paper, the authors present an overview of the use of stable isotopes in watershed hydrology and their application in agricultural and urban watersheds, as well as in marine ecosystems.
Abstract: Contributors. Abbreviations. Introduction. 1. Stable isotope chemistry and measurement: a primer. Elizabeth W. Sulzman. Introduction. What isotopes are, what makes them distinct. Properties of ecologically useful stable isotopes. Technological advances and current trends in the ecological use of isotopes. Acknowledgments. References. 2. Sources of variation in the stable isotopic composition of plants. John D. Marshall, J. Renee Brooks, and Kate Lajtha. Introduction. Carbon isotopes. Nitrogen isotopes. Hydrogen and oxygen isotopes. Conclusions. References. 3. Natural 15N- and 13C-abundance as indicators of forest nitrogen status and soil carbon dynamics. Charles T. Garten, Jr, Paul J. Hanson, Donald E. Todd, Jr, Bonnie B. Lau, and Deanne J. Brice. Introduction. Significance of 15N-abundance to soil carbon sequestration. Vertical changes in soil 13C-abundance and soil carbon dynamics. Conclusions. Acknowledgments. References. 4. Soil nitrogen isotope composition. R. Dave Evans. Introduction. Sources of variation in soil 15N. Patterns of soil nitrogen isotope composition. Conclusions. References. 5. Isotopic study of the biology of modern and fossil vertebrates. Paul L. Koch. Introduction. Vertebrate tissues in the fossil record. Controls on the isotopic composition of vertebrate tissues. Preservation of biogenic isotope compositions by vertebrate fossils. Paleobiological applications. Conclusions. A post-script on workshops and literature resources. References. 6. Isotopic tracking of migrant wildlife. Keith A. Hobson. Introduction. Basic principles. Marine systems. Terrestrial systems (excluding deuterium). Using deuterium patterns in precipitation. Conclusions. References. 7. Natural abundance of 15N in marine planktonic ecosystems. Joseph P. Montoya. Introduction. Background. Isotopic variation in marine nitrogen. Source delineation and isotope budgets. Animal fractionation and food web processes. Isotopic transients in marine systems. Compound-specific nitrogen isotope analyses. Conclusions. Acknowledgment. References. 8. Stable isotope studies in marine chemoautotrophically based ecosystems: An update. Cindy Lee Van Dover. Introduction. Isotopic tracing of carbon at methane seeps. Whale falls. Hydrothermal vents. Conclusions. References. 9. Stable isotope ratios as tracers in marine food webs: An update. Robert H. Michener and Les Kaufman. Introduction. Methods of assessing food webs. Phytoplankton and particulate organic carbon. Phytoplankton and particulate organic nitrogen. Marine food webs. Stable isotopes in marine conservation biology. Conclusions. Acknowledgments. References. 10. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Jacques C. Finlay and Carol Kendall. Introduction. Overview of river food webs and stable isotope approaches. Stable isotope ratios of organic matter sources in stream ecosystems. C, N, and S isotopic variability and its applications in river ecology. Conclusions. Acknowledgments. References. 11. Stable isotope tracers in watershed hydrology. Kevin J. McGuire and Jeff McDonnell. Introduction. Basic concepts in watershed hydrology. Why are stable isotopes needed?. General concepts in isotope hydrology. Applications of isotope hydrology in watershed and ecosystem studies. Conclusions. Acknowledgments. References. 12. Tracing anthropogenic inputs of nitrogen to ecosystems. Carol Kendall, Emily M. Elliott, and Scott D. Wankel. Introduction. Isotopic compositions of major N sources to ecosystems. Processes affecting the isotopic composition of DIN. Separating mixing of sources from the effects of cycling. Applications to different environmental settings. What sources of agricultural and urban sources of nitrate can be distinguished using isotopes?. Other tools for tracing anthropogenic contaminants. Conclusions. References. 13. Modeling the dynamics of stable-isotope ratios for ecosystem biogeochemistry. William S. Currie. Introduction. Designing consistent model-data linkages and comparisons. Principles and techniques of stable isotope modeling. Conclusions. Acknowledgments. References. 14. Compound-specific stable isotope analysis in ecology and paleoecology. Richard P. Evershed, Ian D. Bull, Lorna T. Corr, Zoe M. Crossman, Bart E. van Dongen, Claire Evans, Susan Jim, Hazel Mottram, Anna J. Mukherjee, and Richard D. Pancost. Introduction. Why use compound-specific stable isotopes?. Analytical considerations in compound-specific stable isotope analysis. Applications of compound-specific stable isotope approaches in ecology and paleoecology. Conclusions. References. Index

1,794 citations


Cites background from "Biogenic methane formation in marin..."

  • ...Other research has also exploited the fact that the δ(13)C value of biogenic methane is highly depleted (−50 to −100‰) as a result of isotopic fractionation (Whiticar et al. 1986) and there have been a variety of reports of the presence of (13)C-depleted archaeal ether lipids and sulphate-reducing bacterial biomarkers in marine sediments near methane seeps (Pancost et al....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors identify and evaluate several constraints on the budget of atmospheric methane, its sources, sinks and residence time, and construct a list of sources and sinks, identities, and sizes.
Abstract: Methane is the most abundant organic chemical in Earth's atmosphere, and its concentration is increasing with time, as a variety of independent measurements have shown. Photochemical reactions oxidize methane in the atmosphere; through these reactions, methane exerts strong influence over the chemistry of the troposphere and the stratosphere and many species including ozone, hydroxyl radicals, and carbon monoxide. Also, through its infrared absorption spectrum, methane is an important greenhouse gas in the climate system. We describe and enumerate key roles and reactions. Then we focus on two kinds of methane production: microbial and thermogenic. Microbial methanogenesis is described, and key organisms and substrates are identified along with their properties and habitats. Microbial methane oxidation limits the release of methane from certain methanogenic areas. Both aerobic and anaerobic oxidation are described here along with methods to measure rates of methane production and oxidation experimentally. Indicators of the origin of methane, including C and H isotopes, are reviewed. We identify and evaluate several constraints on the budget of atmospheric methane, its sources, sinks and residence time. From these constraints and other data on sources and sinks we construct a list of sources and sinks, identities, and sizes. The quasi-steady state (defined in the text) annual source (or sink) totals about 310(±60) × 1012 mol (500(±95) × 1012 g), but there are many remaining uncertainties in source and sink sizes and several types of data that could lead to stronger constraints and revised estimates in the future. It is particularly difficult to identify enough sources of radiocarbon-free methane.

1,513 citations

Journal ArticleDOI
TL;DR: It is concluded that greater stewardship, data, and—possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.
Abstract: are consistent with deeper thermogenic methane sources such as the Marcellus and Utica shales at the active sites and matched gas geochemistry from gas wells nearby. In contrast, lower-concentra- tion samples from shallow groundwater at nonactive sites had isotopic signatures reflecting a more biogenic or mixed biogenic/ thermogenic methane source. We found no evidence for contam- ination of drinking-water samples with deep saline brines or frac- turing fluids. We conclude that greater stewardship, data, and— possibly—regulation are needed to ensure the sustainable future of shale-gas extraction and to improve public confidence in its use.

1,285 citations

References
More filters
Journal ArticleDOI
TL;DR: Pore water profiles of total CO 2, pH, PO 3−4, NO − 3 plus NO − 2, SO 2− 4, S 2−, Fe 2+ and Mn 2+ have been obtained in cores from pelagic sediments of the eastern equatorial Atlantic under waters of moderate to high productivity as mentioned in this paper.

3,045 citations

Journal ArticleDOI
TL;DR: The present study focuses on the development and outline of a new treatment based on 16-year-old ribonucleic acid, as well as evidence in support of the new taxonomic treatment.

2,745 citations

Journal ArticleDOI
TL;DR: A survey of the variation of the ratio C13/C12 in nature can be found in this paper, where Urey and his co-workers used two complete feed systems with magnetic switching to determine small differences in isotope ratios between samples and a standard gas.

1,779 citations

Journal ArticleDOI
TL;DR: The deuterium concentrations (δD vs SMOW) of biogenic methanes from world-wide occurrences range from −180 to −280% and were found to be depleted in deutrium by approx. 160%.

1,085 citations

Book ChapterDOI
01 Jan 1974
TL;DR: Methane has been detected in several cores of rapidly deposited (> 50 m/my) deep sea sediments as discussed by the authors, and the methane originates predominantly from bacterial reduction of CO2, as indicated by complimentary changes with depth in the amount and isotopic composition of redox-linked pore water constituents.
Abstract: Methane has been detected in several cores of rapidly deposited (> 50 m/my) deep sea sediments. Other gases, such as carbon dioxide and ethane, are commonly present but only in minor and trace amounts, respectively. The methane originates predominantly from bacterial reduction of CO2, as indicated by complimentary changes with depth in the amount and isotopic composition of redox-linked pore water constituents: sulfate-bicarbonate and bicarbonate-methane.

962 citations