scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biohydrogen production: prospects and limitations to practical application

01 Feb 2004-International Journal of Hydrogen Energy (Elsevier BV)-Vol. 29, Iss: 2, pp 173-185
TL;DR: In this paper, the authors compare the hydrogen production rates of various bio-hydrogen systems by first standardizing the units of hydrogen production and then calculating the size of biohydrogen system that would be required to power proton exchange membrane (PEM) fuel cells of various sizes.
About: This article is published in International Journal of Hydrogen Energy.The article was published on 2004-02-01. It has received 1488 citations till now. The article focuses on the topics: Hydrogen production & Biohydrogen.
Citations
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: A review of technologies related to hydrogen production from both fossil and renewable biomass resources including reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase) and pyrolysis is presented in this article.

2,673 citations

Journal ArticleDOI
TL;DR: In this paper, a review article summarizes bio-hydrogen production from some waste materials, including cellulose and starch containing agricultural and food industry wastes and some food industry wastewaters.

1,569 citations


Cites background from "Biohydrogen production: prospects a..."

  • ...However, the rate of H 2 production is low and the technology for this process needs further development [5]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the current state of the steam reforming process of ethanol, examines different catalysts, and makes a comparative analysis, and concludes that Co/ZnO, ZnO+Al2O3, Co/CeO2, Ni/La 2O3−Ni/La2O2−Al2E3, and Ni/E3−E2E2−E3 performed the best in terms of steam reforming of ethanol.
Abstract: Hydrogen is considered to be the most viable energy carrier for the future. Producing hydrogen from ethanol steam reforming would not only be environmentally friendly but also would open new opportunities for utilization of renewable resources, which are globally available. This paper reviews the current state of the steam reforming process of ethanol, examines different catalysts, and, finally, makes a comparative analysis. Different catalysts have been used for the steam reforming of ethanol. Depending on the type of catalysts, reaction conditions, and the catalyst preparation method, ethanol conversion and hydrogen production vary greatly. It was observed that Co/ZnO, ZnO, Rh/Al2O3, Rh/CeO2, and Ni/La2O3−Al2O3 performed the best, in regard to the steam reforming of ethanol. Currently, hydrogen production from ethanol steam reforming is still in the research and development stage.

1,255 citations

References
More filters
01 Jan 2003

4,246 citations

Book
01 Jan 2000
TL;DR: In this paper, the first edition of this paper, the authors presented an analysis of fuel cell systems and their performance in terms of Molar Gibbs Free Energy Calculations (GFE) and Open Circuit Voltage.
Abstract: Preface. Foreword to the first edition. Acknowledgements. Abbreviations. Symbols. Introduction. Efficiency and Open Circuit Voltage. Operational Fuel Cell Voltages. Proton Exchange Membrane Fuel Cells. Alkaline Electrolyte Fuel Cells. Direct Methanol Fuel Cells. Medium and High Temperature Fuel Cells. Fuelling Fuel Cells. Compressors, Turbines, Ejectors, Fans, Blowers, and Pumps. Delivering Fuel Cell Power. Fuel Cell Systems Analysed. Appendix 1: Change in Molar Gibbs Free Energy Calculations. Appendix 2: Useful Fuel Cell Equations. Index.

4,202 citations


"Biohydrogen production: prospects a..." refers methods in this paper

  • ...[7]; Table 3)....

    [...]

  • ...95 [7]....

    [...]

  • ...The rate of H2 consumption by PEMFCs was calculated as described below based on well established equations [7,8] The anodic, cathodic, and overall reactions in a PEMFC are...

    [...]

Book
30 Apr 1988
TL;DR: In this article, the authors present an overview of the second law of thermodynamics and its application in the context of a gas turbine power plant and evaluate the entropy of the system.
Abstract: 1 Getting Started: Introductory Concepts and Definitions. 1.1 Using Thermodynamics. 1.2 Defining Systems. 1.3 Describing Systems and Their Behavior. 1.4 Measuring Mass, Length, Time, and Force. 1.5 Specific Volume. 1.6 Pressure. 1.7 Temperature. Chapter Summary and Study Guide. 2 Energy and the First Law of Thermodynamics. 2.1 Reviewing Mechanical Concepts of Energy. 2.2 Broadening Our Understanding of Work. 2.3 Broadening Our Understanding of Energy. 2.4 Energy Transfer by Heat. 2.5 Energy Accounting: Energy Balance for Closed Systems. 2.6 Energy Analysis of Cycles. Chapter Summary and Study Guide. 3 Evaluating Properties. 3.1 Getting Started. Evaluating Properties: General Considerations. 3.2 p-v-T Relation. 3.3 Studying Phase Change. 3.4 Retrieving Thermodynamic Properties. 3.5 Evaluating Pressure, Specific Volume, and Temperature. 3.6 Evaluating Specific Internal Energy and Enthalpy. 3.7 Evaluating Properties Using Computer Software. 3.8 Applying the Energy Balance Using Property Tables and Software. Chapter Summary and Study Guide. 4 Control Volume Analysis Using Energy. 4.1 Conservation of Mass for a Control Volume. 4.2 Forms of the Mass Rate Balance. 4.3 Applications of the Mass Rate Balance. 4.4 Conservation of Energy for a Control Volume. Chapter Summary and Study Guide. 5 The Second Law of Thermodynamics. 5.1 Introducing the Second Law. 5.2 Statements of the Second Law. 5.3 Identifying Irreversibilities. 5.4 Interpreting the Kelvin-Planck Statement. 5.5 Applying the Second Law to Thermodynamic Cycles. 5.6 Second Law Aspects of Power Cycles Interacting with Two Reservoirs. Chapter Summary and Study Guide. 6 Using Entropy. 6.1 Entropy-A System Property. 6.2 Retrieving Entropy Data. 6.3 Introducing the T dS Equations. 6.4 Entropy Change of an Incompressible Substance. 6.5 Entropy Change of an Ideal Gas. 6.6 Entropy Change in Internally Reversible Processes of Closed Systems. 6.7 Entropy Balance for Closed Systems. 6.8 Directionality of Processes. 6.9 Entropy Rate Balance for Control Volumes. Steady-State Flow Processes. Chapter Summary and Study Guide. 7 Exergy Analysis. 7.1 Introducing Exergy. 7.2 Conceptualizing Exergy. 7.3 Exergy of a System. 7.4 Closed System Exergy Balance. 7.5 Exergy Rate Balance for Control Volumes at Steady State. 7.6 Exergetic (Second Law) Efficiency. 7.7 Thermoeconomics. Chapter Summary and Study Guide. 8 Vapor Power Systems. 8.1 Modeling Vapor Power Systems. 8.2 Analyzing Vapor Power Systems-Rankine Cycle. 8.3 Improving Performance-Superheat and Reheat. 8.4 Improving Performance-Regenerative Vapor Power Cycle. 8.5 Other Vapor Cycle Aspects. 8.6 Case Study: Exergy Accounting of a Vapor Power Plant. Chapter Summary and Study Guide. 9 Gas Power Systems. Internal Combustion Engines. 9.1 Introducing Engine Terminology. 9.2 Air-Standard Otto Cycle. 9.3 Air-Standard Diesel Cycle. 9.4 Air-Standard Dual Cycle. Gas Turbine Power Plants. 9.5 Modeling Gas Turbine Power Plants. 9.6 Air-Standard Brayton Cycle. 9.7 Regenerative Gas Turbines. 9.8 Regenerative Gas Turbines with Reheat and Intercooling. 9.9 Gas Turbines for Aircraft Propulsion. 9.10 Combined Gas Turbine-Vapor Power Cycle. Chapter Summary and Study Guide. 10 Refrigeration and Heat Pump Systems. 10.1 Vapor Refrigeration Systems. 10.2 Analyzing Vapor-Compression Refrigeration Systems. 10.3 Refrigerant Properties. 10.4 Cascade and Multistage Vapor-Compression Systems. 10.5 Absorption Refrigeration. 10.6 Heat Pump Systems. 10.7 Gas Refrigeration Systems. Chapter Summary and Study Guide. 11 Thermodynamic Relations. 11.1 Using Equations of State. 11.2 Important Mathematical Relations. 11.3 Developing Property Relations. 11.4 Evaluating Changes in Entropy, Internal Energy, and Enthalpy. 11.5 Other Thermodynamic Relations. 11.6 Constructing Tables of Thermodynamic Properties. Charts for Enthalpy and Entropy. 11.8 p-v-T Relations for Gas Mixtures. 11.9 Analyzing Multicomponent Systems. Chapter Summary and Study Guide. 12 Ideal Gas Mixture and Psychrometric Applications. Ideal Gas Mixtures: General Considerations. 12.1 Describing Mixture Composition. 12.2 Relating p, V, and T for Ideal Gas Mixtures. 12.3 Evaluating U, H, S, and Specific Heats. 12.4 Analyzing Systems Involving Mixtures. Psychrometric Applications. 12.5 Introducing Psychrometric Principles. 12.6 Psychrometers: Measuring the Wet-Bulb and Dry-Bulb Temperatures. 12.7 Psychrometric Charts. 12.8 Analyzing Air-Conditioning Processes. 12.9 Cooling Towers. Chapter Summary and Study Guide. 13 Reacting Mixtures and Combustion. Combustion Fundamentals. 13.1 Introducing Combustion. 13.2 Conservation of Energy-Reacting Systems. 13.3 Determining the Adiabatic Flame Temperature. 13.4 Fuel Cells. 13.5 Absolute Entropy and the Third Law of Thermodynamics. Chemical Exergy. 13.6 Introducing Chemical Exergy. 13.7 Standard Chemical Exergy. 13.8 Exergy Summary. 13.9 Exergetic (Second Law) Efficiencies of Reacting Systems. Chapter Summary and Study Guide. 14 Chemical and Phase Equilibrium. Equilibrium Fundamentals. 14.1 Introducing Equilibrium Criteria. Chemical Equilibrium. 14.2 Equation of Reaction Equilibrium. 14.3 Calculating Equilibrium Compositions. 14.4 Further Examples of the Use of the Equilibrium Constant. Phase Equilibrium. 14.5 Equilibrium Between Two Phases of a Pure Substance. 14.6 Equilibrium of Multicomponent, Multiphase Systems. Chapter Summary and Study Guide. Appendix Tables, Figures, and Charts. Index to Tables in SI Units. Index to Tables in English Units. Index to Figures and Charts. Index. Answers to Selected Problems: Visit the student.

2,775 citations

Book
01 Jan 1970
TL;DR: Biology of microorganisms, Biology of micro organisms, مرکز فناوری اطلاعات و اصاع رسانی, کδاوρزی
Abstract: Introduction - an overview of microbiology and cell biology cell chemistry cell biology metabolism, biosynthesis and nutrition macromolecules and molecular genetics viruses microbial genetics genetic engineering and biotechnology growth and its control industrial microbiology host-parasite relationships immunology and immunity clinical and diagnostic mibrobiology epidemiology and public health microbiology major microbial diseases metabolic diversity among the microorganisms microbial ecology molecular systematics and microbial evolution the bacteria archaea eukarya - eukaryotic microorganisms

2,240 citations

Journal ArticleDOI
TL;DR: The paper presents a survey of biological hydrogen production processes, and the microorganisms and biochemical pathways involved in hydrogen generation processes are presented in some detail.

1,915 citations


"Biohydrogen production: prospects a..." refers background in this paper

  • ...Biological systems provide a wide range of approaches to generate hydrogen, and include direct biophotolysis, indirect biophotolysis, photo-fermentations, and dark-fermentation [3–5]....

    [...]