scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biological nitrogen fixation in non-legume plants

01 May 2013-Annals of Botany (Oxford University Press)-Vol. 111, Iss: 5, pp 743-767
TL;DR: Improved understanding of the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided.
About: This article is published in Annals of Botany.The article was published on 2013-05-01 and is currently open access. It has received 558 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: This review focuses on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve the understanding of the molecular mechanisms underpinning this phenomenon.
Abstract: In their natural environment plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are however largely unknown. In this review we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon.

748 citations


Cites background from "Biological nitrogen fixation in non..."

  • ...…in diverse bacterial taxa (Gyaneshwar et al., 2011), and that non-leguminous plants have been documented to host N2-fixing bacterial strains (Santi et al., 2013), perhaps implying that other plant–microbe combinations (not just legumes and Rhizobia) could be similarly optimized to promote…...

    [...]

Journal ArticleDOI
TL;DR: Several pieces of evidence highlight that the inoculation of plants with PGPR can have considerable effects on plant at both physiological and molecular levels, suggesting the possibility that soil biota could stimulate plants being more efficient in retrieving nutrients from soil and coping with abiotic stresses.
Abstract: Plant growth-promoting rhizobacteria (PGPR) are soil bacteria that are able to colonize rhizosphere and to enhance plant growth by means of a wide variety of mechanisms like organic matter mineralization, biological control against soil-borne pathogens, biological nitrogen fixation, and root growth promotion. A very interesting feature of PGPR is their ability of enhancing nutrient bioavailability. Several bacterial species have been characterized as P-solubilizing microorganisms while other species have been shown to increase the solubility of micronutrients, like those that produce siderophores for Fe chelation. The enhanced amount of soluble macro- and micronutrients in the close proximity of the soil-root interface has indeed a positive effect on plant nutrition. Furthermore, several pieces of evidence highlight that the inoculation of plants with PGPR can have considerable effects on plant at both physiological and molecular levels (e.g., induction of rhizosphere acidification, up- and downregulation of genes involved in ion uptake, and translocation), suggesting the possibility that soil biota could stimulate plants being more efficient in retrieving nutrients from soil and coping with abiotic stresses. However, the molecular mechanisms underlying these phenomena, the signals involved as well as the potential applications in a sustainable agriculture approach, and the biotechnological aspects for possible rhizosphere engineering are still matters of discussion.

564 citations


Cites background from "Biological nitrogen fixation in non..."

  • ...In addition, the diazothrophs belonging to the genus Frankia can also colonize a small group of woody, non-legume plants, known as actinorhizal plants, inducing the formation of nitrogen-fixing root nodules (Santi et al. 2013)....

    [...]

Journal ArticleDOI
TL;DR: Generally, ACC deaminase and IAA-producing bacteria can be a good option for optimal crop production and production of bio-fertilizers in the future due to having multiple potentials in alleviating stresses of salinity, drought, nutrient imbalance, and heavy metals toxicity in plants.

429 citations

Journal ArticleDOI
TL;DR: In this article, a minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.
Abstract: Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.

394 citations

Journal ArticleDOI
25 Nov 2017
TL;DR: This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.
Abstract: The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.

377 citations


Cites background from "Biological nitrogen fixation in non..."

  • ...The mobility of bacterial cells accompanied by the synthesis of cellulolytic enzyme may help endophytes to spread to aerial plant parts including leaves and stems [12,25,81]....

    [...]

  • ...some bacterial endophytes carry genes necessary for biological nitrogen fixation (BNF), potentially enabling them to convert dinitrogen gas (N2) into usable forms of nitrogen such as ammonium and nitrate within the host plant [24,25]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Revisions are designed to permit the generic identification of cultures, often difficult through use of the field-based system of phycological classification, and are both constant and readily determinable in cultured material.
Abstract: Summary: On the basis of a comparative study of 178 strains of cyanobacteria, representative of this group of prokaryotes, revised definitions of many genera are proposed. Revisions are designed to permit the generic identification of cultures, often difficult through use of the field-based system of phycological classification. The differential characters proposed are both constant and readily determinable in cultured material. The 22 genera recognized are placed in five sections, each distinguished by a particular pattern of structure and development. Generic descriptions are accompanied by strain histories, brief accounts of strain properties, and illustrations; one or more reference strains are proposed for each genus. The collection on which this analysis was based has been deposited in the American Type Culture Collection, where strains will be listed under the generic designations proposed here.

7,107 citations

Journal ArticleDOI
TL;DR: This review focuses on the known, the putative, and the speculative modes-of-action of PGPR, which include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses.
Abstract: Numerous species of soil bacteria which flourish in the rhizosphere of plants, but which may grow in, on, or around plant tissues, stimulate plant growth by a plethora of mechanisms. These bacteria are collectively known as PGPR (plant growth promoting rhizobacteria). The search for PGPR and investigation of their modes of action are increasing at a rapid pace as efforts are made to exploit them commercially as biofertilizers. After an initial clarification of the term biofertilizers and the nature of associations between PGPR and plants (i.e., endophytic versus rhizospheric), this review focuses on the known, the putative, and the speculative modes-of-action of PGPR. These modes of action include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses. The combination of these modes of actions in PGPR is also addressed, as well as the challenges facing the more widespread utilization of PGPR as biofertilizers.

2,982 citations

Journal ArticleDOI
TL;DR: The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.
Abstract: Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

1,941 citations

Journal ArticleDOI
TL;DR: Historically, endophytic bacteria have been thought to be weakly virulent plant pathogens but have recently been discovered to have several beneficial effects on host plants, such as plant growth promotion and increased resistance against plant pathogens and parasites.
Abstract: Endophytic bacteria are ubiquitous in most plant species, residing latently or actively colonizing plant tissues locally as well as systemically Several definitions have been proposed for endophyt

1,796 citations

Journal ArticleDOI
TL;DR: The individual steps of plant colonization are described and the known mechanisms responsible for rhizosphere and endophytic competence are surveyed to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.
Abstract: In both managed and natural ecosystems, beneficial plant-associated bacteria play a key role in supporting and/or increasing plant health and growth. Plant growth-promoting bacteria (PGPB) can be applied in agricultural production or for the phytoremediation of pollutants. However, because of their capacity to confer plant beneficial effects, efficient colonization of the plant environment is of utmost importance. The majority of plant-associated bacteria derives from the soil environment. They may migrate to the rhizosphere and subsequently the rhizoplane of their hosts before they are able to show beneficial effects. Some rhizoplane colonizing bacteria can also penetrate plant roots, and some strains may move to aerial plant parts, with a decreasing bacterial density in comparison to rhizosphere or root colonizing populations. A better understanding on colonization processes has been obtained mostly by microscopic visualisation as well as by analysing the characteristics of mutants carrying disfunctional genes potentially involved in colonization. In this review we describe the individual steps of plant colonization and survey the known mechanisms responsible for rhizosphere and endophytic competence. The understanding of colonization processes is important to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.

1,705 citations