scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer

20 Mar 2021-Current Treatment Options in Oncology (Springer Science and Business Media LLC)-Vol. 22, Iss: 5, pp 38-38
TL;DR: Atezolizumab in combination with nab-paclitaxel is recommended as first-line treatment for patients with PD-L1-positive metastatic TNBC.
Abstract: Immune checkpoint blockade (ICB) has revolutionized the treatment landscape across multiple solid tumor types. In triple-negative breast cancer (TNBC), clinical benefit for the addition of ICB to chemotherapy has been shown in both the metastatic and early stage disease settings. A minority of patients with TNBC will truly benefit from ICB, with many tumors unlikely to respond, and ICB can cause additional toxicities for patients to incur. In clinical practice, ICB-based regimens are emerging as standard-of-care treatment options in TNBC subpopulations. Atezolizumab in combination with nab-paclitaxel is recommended as first-line treatment for patients with PD-L1-positive metastatic TNBC. Clinical trials are needed to confirm this benefit and evaluate if additional biomarkers may allow for improved patient selection. Trials investigating ICB in early-stage breast cancer show promise for the benefit of combination ICB with neoadjuvant chemotherapy. However, longer follow-up is required before ICB can be considered as standard-of-care treatment in the early stage setting. In both metastatic and early stage TNBC, novel biomarkers to improve patient selection are now under investigation. These include multiplex IHC to profile immune cell subtypes (such as tumor infiltrating lymphocytes) or RNA gene expression profiling to detect signatures suggestive of a T-cell-inflamed microenvironment. Detecting somatic mutations through tumor next-generation DNA sequencing may predict resistance mechanisms or suggest sensitivity to ICB monotherapy or in combination with other forms of systemic therapy. These biomarker platforms may allow for a more granular analysis of immune activity and should be further investigated in prospective studies with the aim of personalizing ICB-focused therapies in TNBC.
Citations
More filters
Journal ArticleDOI
01 Aug 2022-Cancers
TL;DR: It is now known that microorganisms have the capacity to change the density and function of anticancer and suppressive immune cells, enabling the promotion of an inflammatory environment.
Abstract: Simple Summary Microbiota plays a fundamental role in the induction, training and function of the human immune system. The interactions between microbiota and immune cells have consequences in several settings, namely in carcinogenesis but also in anticancer activity. Immunotherapy, already widely used in the treatment of several solid cancers, modulates the action of the immune system, promoting antitumour effects. Recently, there has been a growing interest in studying the microbiota composition as a possible modulator of the tumour microenvironment and consequently of the response to certain therapies such as immunotherapy. Abstract The tumour microenvironment (TME) comprises a complex ecosystem of different cell types, including immune cells, cells of the vasculature and lymphatic system, cancer-associated fibroblasts, pericytes, and adipocytes. Cancer proliferation, invasion, metastasis, drug resistance and immune escape are all influenced by the dynamic interaction between cancer cells and TME. Microbes, such as bacteria, fungi, viruses, archaea and protists, found within tumour tissues, constitute the intratumour microbiota, which is tumour type-specific and distinct among patients with different clinical outcomes. Growing evidence reveals a significant relevance of local microbiota in the colon, liver, breast, lung, oral cavity and pancreas carcinogenesis. Moreover, there is a growing interest in the tumour immune microenvironment (TIME) pointed out in several cross-sectional studies on the correlation between microbiota and TME. It is now known that microorganisms have the capacity to change the density and function of anticancer and suppressive immune cells, enabling the promotion of an inflammatory environment. As immunotherapy (such as immune checkpoint inhibitors) is becoming a promising therapy using TIME as a therapeutic target, the analysis and comprehension of local microbiota and its modulating strategies can help improve cancer treatments.

6 citations

Journal ArticleDOI
TL;DR: Torres et al. as discussed by the authors showed that Nitroso-N-methylurea-induced mammary tumors in outbred Sprague-Dawley rats recapitulate the heterogeneity for mutational profiles, ER expression, and immune evasive mechanisms observed in human breast cancer.
Abstract: Animal models are critical for the preclinical validation of cancer immunotherapies. Unfortunately, mouse breast cancer models do not faithfully reproduce the molecular subtypes and immune environment of the human disease. In particular, there are no good murine models of estrogen receptor-positive (ER+) breast cancer, the predominant subtype in patients. Here, we show that Nitroso-N-methylurea-induced mammary tumors in outbred Sprague-Dawley rats recapitulate the heterogeneity for mutational profiles, ER expression, and immune evasive mechanisms observed in human breast cancer. We demonstrate the utility of this model for preclinical studies by dissecting mechanisms of response to immunotherapy using combination TGFBR inhibition and PD-L1 blockade. Short-term treatment of early-stage tumors induced durable responses. Gene expression profiling and spatial mapping classified tumors as inflammatory and noninflammatory, and identified IFNγ, T-cell receptor (TCR), and B-cell receptor (BCR) signaling, CD74/MHC II, and epithelium-interacting CD8+ T cells as markers of response, whereas the complement system, M2 macrophage phenotype, and translation in mitochondria were associated with resistance. We found that the expression of CD74 correlated with leukocyte fraction and TCR diversity in human breast cancer. We identified a subset of rat ER+ tumors marked by expression of antigen-processing genes that had an active immune environment and responded to treatment. A gene signature characteristic of these tumors predicted disease-free survival in patients with ER+ Luminal A breast cancer and overall survival in patients with metastatic breast cancer receiving anti-PD-L1 therapy. We demonstrate the usefulness of this preclinical model for immunotherapy and suggest examination to expand immunotherapy to a subset of patients with ER+ disease. See related Spotlight by Roussos Torres, p. 672.

3 citations

Journal ArticleDOI
TL;DR: In this paper , Suplatast tosilate (IPD-1151 T, IPD) was employed to investigate the biological effects of Th2 blockade on tumor growth and immune microenvironment in immunocompetent breast cancer models.
Abstract: Breast cancer is a complex disease with a highly immunosuppressive tumor microenvironment, and has limited clinical response to immune checkpoint blockade (ICB) therapy. T-helper 2 (Th2) cells, an important component of the tumor microenvironment (TME), play an essential role in regulation of tumor immunity. However, the deep relationship between Th2-mediated immunity and immune evasion in breast cancer remains enigmatic.Here, we first used bioinformatics analysis to explore the correlation between Th2 infiltration and immune landscape in breast cancer. Suplatast tosilate (IPD-1151 T, IPD), an inhibitor of Th2 function, was then employed to investigate the biological effects of Th2 blockade on tumor growth and immune microenvironment in immunocompetent murine breast cancer models. The tumor microenvironment was analyzed by flow cytometry, mass cytometry, and immunofluorescence staining. Furthermore, we examined the efficacy of IPD combination with ICB treatment by evaluating TME, tumor growth and mice survival.Our bioinformatics analysis suggested that higher infiltration of Th2 cells indicates a tumor immunosuppressive microenvironment in breast cancer. In three murine breast cancer models (EO771, 4T1 and EMT6), IPD significantly inhibited the IL-4 secretion by Th2 cells, promoted Th2 to Th1 switching, remodeled the immune landscape and inhibited tumor growth. Remarkably, CD8+ T cell infiltration and the cytotoxic activity of cytotoxic T lymphocyte (CTL) in tumor tissues were evidently enhanced after IPD treatment. Furthermore, increased effector CD4+ T cells and decreased myeloid-derived suppressor cells and M2-like macrophages were also demonstrated in IPD-treated tumors. Importantly, we found IPD reinforced the therapeutic response of ICB without increasing potential adverse effects.Our findings demonstrate that pharmaceutical inhibition of Th2 cell function improves ICB response via remodeling immune landscape of TME, which illustrates a promising combinatorial immunotherapy.

2 citations

Journal ArticleDOI
TL;DR: The first Buenos Aires Breast Cancer Symposium (BA-BCS) was held in a virtual format between the 17th and the 21st of May 2021 as mentioned in this paper, which included not only talks on basic, translational and clinical research, but also round tables to discuss diagnostic methods, research financing and biobank management.
Abstract: The first Buenos Aires Breast Cancer Symposium (BA-BCS) was held in a virtual format, between the 17th and the 21st of May 2021. The main goal of the meeting was to facilitate the interaction among physicians and basic researchers from South America and with peers from the rest of the world. To embrace their different interests and concerns, the congress included not only talks on basic, translational and clinical research, but also round tables to discuss diagnostic methods, research financing and biobank management, as well as virtual poster sessions in which the youngest fellows presented their recent findings. This report provides a brief overview of the talks delivered during the meeting, which addressed a wide variety of vital issues for breast cancer research mostly focused on the accurate diagnosis, prevention and treatment of this illness. The presentations included a wide spectrum of themes including hormone receptors and the relevance of their mutations, immunotherapy, cancer stem cells, mouse models, environmental hazards, genetics and epigenetics, local and systemic therapies, liquid biopsies, the metastatic cascade, therapy resistance and dormancy, among others.

2 citations

Journal ArticleDOI
TL;DR: In this article , the authors described changes in the tumour microenvironment following NACT and NAET and compared the effect of the two drugs on the tumor microenvironment in both immune therapy and placebo arms.
Abstract: Neoadjuvant chemotherapy (NACT) has become the standard of care for high‐risk breast cancer, including triple‐negative (TNBC) and HER2‐positive disease. As a result, handling and reporting of breast specimens post‐NACT is part of routine practice, and it is important for pathologists to recognise the changes in tumour cells, tumour‐associated stroma and background breast tissue induced by NACT. Familiarity with characteristic stromal features enables identification of the pre‐treatment tumour site and allows confident diagnosis of pathological complete response (pCR) which is important for decisions concerning adjuvant therapy. Neoadjuvant endocrine therapy (NAET) is used less frequently than NACT; however, the SARS‐COVID‐19 pandemic has changed practice, with increased use as bridging therapy if surgery is delayed. NAET also induces characteristic changes in the tumour and stroma. Changes in the tumour microenvironment following NACT and NAET are also described. Immunotherapy is approved for use in advanced TNBC, and there are several trials exploring its role in early TNBC in the neoadjuvant setting. The current biomarker to determine eligibility for treatment with immune checkpoint inhibitors is programmed death ligand‐1 (PD‐L1) immunohistochemistry; however, this is complicated by lack of standardisation with different drugs linked to tests using different antibodies with different scoring systems. The situation in the neoadjuvant setting is further complicated by improved pCR rates for PD‐L1‐positive tumours in both immune therapy and placebo arms. Alternative biomarkers are urgently needed to identify which patients will derive benefit from immunotherapy and key candidates are discussed.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: Pembrolizumab is a humanized monoclonal antibody against programmed death 1 (PD-1) that has antitumor activity in advanced non-small-cell lung cancer (NSCLC), with increased activity in tumors that express PD-L1 as mentioned in this paper.
Abstract: BackgroundPembrolizumab is a humanized monoclonal antibody against programmed death 1 (PD-1) that has antitumor activity in advanced non–small-cell lung cancer (NSCLC), with increased activity in tumors that express programmed death ligand 1 (PD-L1). MethodsIn this open-label, phase 3 trial, we randomly assigned 305 patients who had previously untreated advanced NSCLC with PD-L1 expression on at least 50% of tumor cells and no sensitizing mutation of the epidermal growth factor receptor gene or translocation of the anaplastic lymphoma kinase gene to receive either pembrolizumab (at a fixed dose of 200 mg every 3 weeks) or the investigator’s choice of platinum-based chemotherapy. Crossover from the chemotherapy group to the pembrolizumab group was permitted in the event of disease progression. The primary end point, progression-free survival, was assessed by means of blinded, independent, central radiologic review. Secondary end points were overall survival, objective response rate, and safety. ResultsMedi...

7,053 citations

Journal ArticleDOI
TL;DR: A method that uses gene expression signatures to infer the fraction of stromal and immune cells in tumour samples and prediction accuracy is corroborated using 3,809 transcriptional profiles available elsewhere in the public domain.
Abstract: Infiltrating stromal and immune cells form the major fraction of normal cells in tumour tissue and not only perturb the tumour signal in molecular studies but also have an important role in cancer biology. Here we describe 'Estimation of STromal and Immune cells in MAlignant Tumours using Expression data' (ESTIMATE)--a method that uses gene expression signatures to infer the fraction of stromal and immune cells in tumour samples. ESTIMATE scores correlate with DNA copy number-based tumour purity across samples from 11 different tumour types, profiled on Agilent, Affymetrix platforms or based on RNA sequencing and available through The Cancer Genome Atlas. The prediction accuracy is further corroborated using 3,809 transcriptional profiles available elsewhere in the public domain. The ESTIMATE method allows consideration of tumour-associated normal cells in genomic and transcriptomic studies. An R-library is available on https://sourceforge.net/projects/estimateproject/.

4,651 citations

Journal ArticleDOI
TL;DR: Among patients with advanced melanoma, significantly longer overall survival occurred with combination therapy with nivolumab plus ipilimumab or with n ivolumAB alone than with ipil optimumab alone.
Abstract: BackgroundNivolumab combined with ipilimumab resulted in longer progression-free survival and a higher objective response rate than ipilimumab alone in a phase 3 trial involving patients with advanced melanoma. We now report 3-year overall survival outcomes in this trial. MethodsWe randomly assigned, in a 1:1:1 ratio, patients with previously untreated advanced melanoma to receive nivolumab at a dose of 1 mg per kilogram of body weight plus ipilimumab at a dose of 3 mg per kilogram every 3 weeks for four doses, followed by nivolumab at a dose of 3 mg per kilogram every 2 weeks; nivolumab at a dose of 3 mg per kilogram every 2 weeks plus placebo; or ipilimumab at a dose of 3 mg per kilogram every 3 weeks for four doses plus placebo, until progression, the occurrence of unacceptable toxic effects, or withdrawal of consent. Randomization was stratified according to programmed death ligand 1 (PD-L1) status, BRAF mutation status, and metastasis stage. The two primary end points were progression-free survival a...

3,794 citations

Journal ArticleDOI
TL;DR: Overall survival and objective response rates were significantly higher with nivolumab plus ipilimumab than with sunitinib among intermediate‐ and poor‐risk patients with previously untreated advanced renal‐cell carcinoma.
Abstract: Background Nivolumab plus ipilimumab produced objective responses in patients with advanced renal-cell carcinoma in a pilot study. This phase 3 trial compared nivolumab plus ipilimumab with sunitinib for previously untreated clear-cell advanced renal-cell carcinoma. Methods We randomly assigned adults in a 1:1 ratio to receive either nivolumab (3 mg per kilogram of body weight) plus ipilimumab (1 mg per kilogram) intravenously every 3 weeks for four doses, followed by nivolumab (3 mg per kilogram) every 2 weeks, or sunitinib (50 mg) orally once daily for 4 weeks (6-week cycle). The coprimary end points were overall survival (alpha level, 0.04), objective response rate (alpha level, 0.001), and progression-free survival (alpha level, 0.009) among patients with intermediate or poor prognostic risk. Results A total of 1096 patients were assigned to receive nivolumab plus ipilimumab (550 patients) or sunitinib (546 patients); 425 and 422, respectively, had intermediate or poor risk. At a median follo...

2,984 citations

Journal ArticleDOI
TL;DR: By parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
Abstract: The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient's tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.

2,920 citations