scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials

21 May 2007-Advanced Materials (WILEY‐VCH Verlag)-Vol. 19, Iss: 10, pp 1309-1319
TL;DR: Bionan composites represent an emerging group of nanostructured hybrid materials, which are formed by the combination of natural polymers and inorganic solids and show at least one dimension on the nanometer scale.
Abstract: Bionanocomposites represent an emerging group of nanostructured hybrid materials. They are formed by the combination of natural polymers and inorganic solids and show at least one dimension on the nanometer scale. Similar to conventional nanocomposites, which involve synthetic polymers, these biohybrid materials also exhibit improved structural and functional properties of great interest for different applications. The properties inherent to the biopolymers, that is, biocompatibility and biodegradability, open new prospects for these hybrid materials with special incidence in regenerative medicine and in environmentally friendly materials (green nanocomposites). Research on bionanocomposites can be regarded as a new interdisciplinary field closely related to significant topics such as biomineralization processes, bioinspired materials, and biomimetic systems. The upcoming development of novel bionanocomposites introducing multifunctionality represents a promising research topic that takes advantage of the synergistic assembling of biopolymers with inorganic nanometer-sized solids.
Citations
More filters
Journal ArticleDOI
TL;DR: Delamination of LDHs is an interesting route for producing positively charged thin platelets with a thickness of a few atomic layers, which can be used as nanocomposites for polymers or as building units for making new designed organic- inorganic or inorganic-inorganic nanomaterials.
Abstract: Layered double hydroxides (LDHs) are a class of ionic lamellar compounds made up of positively charged brucite-like layers with an interlayer region containing charge compensating anions and solvation molecules. Delamination of LDHs is an interesting route for producing positively charged thin platelets with a thickness of a few atomic layers, which can be used as nanocomposites for polymers or as building units for making new designed organic-inorganic or inorganic-inorganic nanomaterials. The synthesis of nanosized LDH platelets can be generally classified into two approaches, bottom-up and top-down. It requires modification of the LDH interlamellar environment and then selection of an appropriate solvent system. In DDS intercalated LDHs, the aliphatic tails of the DDS- anions exhibit a high degree of interdigitation in order to maximize guest-guest dispersive interactions. Bellezza reported that the LDH colloids can also been obtained by employing a reverse microemulsion approach.

2,616 citations

Journal ArticleDOI
TL;DR: The description and discussion of the major applications of hybrid inorganic-organic (or biologic) materials are the major topic of this critical review.
Abstract: Today cross-cutting approaches, where molecular engineering and clever processing are synergistically coupled, allow the chemist to tailor complex hybrid systems of various shapes with perfect mastery at different size scales, composition, functionality, and morphology. Hybrid materials with organic–inorganic or bio–inorganic character represent not only a new field of basic research but also, via their remarkable new properties and multifunctional nature, hybrids offer prospects for many new applications in extremely diverse fields. The description and discussion of the major applications of hybrid inorganic–organic (or biologic) materials are the major topic of this critical review. Indeed, today the very large set of accessible hybrid materials span a wide spectrum of properties which yield the emergence of innovative industrial applications in various domains such as optics, micro-electronics, transportation, health, energy, housing, and the environment among others (526 references).

1,159 citations

Journal ArticleDOI
13 Dec 2010-Polymers
TL;DR: In this article, a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications is presented, and different systems are detailed depending on the polymer solubility, i.e., (i) hydrosoluble systems, (ii) non-hydrosolvable systems, and (iii) emulsion systems.
Abstract: Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC)—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially increasing number of works or reviews devoted to understanding such materials and their applications. Major studies over the last decades have shown that cellulose nanoparticles could be used as fillers to improve mechanical and barrier properties of biocomposites. Their use for industrial packaging is being investigated, with continuous studies to find innovative solutions for efficient and sustainable systems. Processing is more and more important and different systems are detailed in this paper depending on the polymer solubility, i.e., (i) hydrosoluble systems, (ii) non-hydrosoluble systems, and (iii) emulsion systems. This paper intends to give a clear overview of cellulose nanoparticles reinforced composites with more than 150 references by describing their preparation, characterization, properties and applications.

1,108 citations


Cites background from "Bionanocomposites: A New Concept of..."

  • ..., carbon nanotubes and nanoclay) also come under ―bionanocomposites‖ [40,95]....

    [...]

Journal ArticleDOI
TL;DR: A broad review on the recent advances in the research and development of biobased plastics and bionanocomposites that are used in various applications such as packaging, durable goods, electronics and biomedical uses is presented in this paper.

863 citations

Journal ArticleDOI
TL;DR: This review is intended to summarize the applications of nanotechnology relevant to food and nutraceuticals together with identifying the outstanding challenges.

704 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a review of polymer-layered silicate nanocomposites is presented, where the polymer chains are sandwiched in between silicate layers and exfoliated layers are more or less uniformly dispersed in the polymer matrix.
Abstract: This review aims at reporting on very recent developments in syntheses, properties and (future) applications of polymer-layered silicate nanocomposites. This new type of materials, based on smectite clays usually rendered hydrophobic through ionic exchange of the sodium interlayer cation with an onium cation, may be prepared via various synthetic routes comprising exfoliation adsorption, in situ intercalative polymerization and melt intercalation. The whole range of polymer matrices is covered, i.e. thermoplastics, thermosets and elastomers. Two types of structure may be obtained, namely intercalated nanocomposites where the polymer chains are sandwiched in between silicate layers and exfoliated nanocomposites where the separated, individual silicate layers are more or less uniformly dispersed in the polymer matrix. This new family of materials exhibits enhanced properties at very low filler level, usually inferior to 5 wt.%, such as increased Young’s modulus and storage modulus, increase in thermal stability and gas barrier properties and good flame retardancy.

5,901 citations

Journal ArticleDOI
TL;DR: Challenges in scaffold fabrication for tissue engineering such as biomolecules incorporation, surface functionalization and 3D scaffold characterization are discussed, giving possible solution strategies.

3,505 citations

Journal ArticleDOI
TL;DR: In this article, the authors propose a vectorial chemistry approach for the generation of new generations of hybrid materials, which will open a land of promising applications in many areas: optics, electronics, ionics, mechanics, energy, environment, biology, medicine for example as membranes and separation devices, functional smart coatings, fuel and solar cells, catalysts, sensors, etc.
Abstract: Organic–inorganic hybrid materials do not represent only a creative alternative to design new materials and compounds for academic research, but their improved or unusual features allow the development of innovative industrial applications. Nowadays, most of the hybrid materials that have already entered the market are synthesised and processed by using conventional soft chemistry based routes developed in the eighties. These processes are based on: a) the copolymerisation of functional organosilanes, macromonomers, and metal alkoxides, b) the encapsulation of organic components within sol–gel derived silica or metallic oxides, c) the organic functionalisation of nanofillers, nanoclays or other compounds with lamellar structures, etc. The chemical strategies (self-assembly, nanobuilding block approaches, hybrid MOF (Metal Organic Frameworks), integrative synthesis, coupled processes, bio-inspired strategies, etc.) offered nowadays by academic research allow, through an intelligent tuned coding, the development of a new vectorial chemistry, able to direct the assembling of a large variety of structurally well defined nano-objects into complex hybrid architectures hierarchically organised in terms of structure and functions. Looking to the future, there is no doubt that these new generations of hybrid materials, born from the very fruitful activities in this research field, will open a land of promising applications in many areas: optics, electronics, ionics, mechanics, energy, environment, biology, medicine for example as membranes and separation devices, functional smart coatings, fuel and solar cells, catalysts, sensors, etc.

2,321 citations

Journal ArticleDOI
TL;DR: A review of polymer blends and composites from renewable resources can be found in this article, where the progress of blends from three kinds of polymers from renewable sources (i.e., natural polymers such as starch, protein and cellulose), synthetic polymers, such as polylactic acid and polyhydroxybutyrate, are described with an emphasis on potential applications.

1,931 citations

Journal ArticleDOI
TL;DR: The surface and bulk modification of biomaterials with cell recognition molecules to design biomimetic materials for tissue engineering and recent advances for the development of biomimetics materials in bone, nerve, and cardiovascular tissue engineering are summarized.

1,717 citations