scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biopolymer composites: a review

05 Feb 2021-Vol. 3, Iss: 1, pp 40-84
TL;DR: In spite of the fact that a prodigious portion of petroleum covers multitudinous products in the commercial world, its non-biodegradable characteristic is an unenviable factor as discussed by the authors.
Abstract: In spite of the fact that a prodigious portion of petroleum covers multitudinous products in the commercial world, its non-biodegradable characteristic is an unenviable factor The utilization of b
Citations
More filters
Journal ArticleDOI
TL;DR: An overview of the latest knowledge of different natural and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented in this paper , which discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects.
Abstract: Advancements in polymer science and engineering have helped the scientific community to shift its attention towards the use of environmentally benign materials for reducing the environmental impact of conventional synthetic plastics. Biopolymers are environmentally benign, chemically versatile, sustainable, biocompatible, biodegradable, inherently functional, and ecofriendly materials that exhibit tremendous potential for a wide range of applications including food, electronics, agriculture, textile, biomedical, and cosmetics. This review also inspires the researchers toward more consumption of biopolymer-based composite materials as an alternative to synthetic composite materials. Herein, an overview of the latest knowledge of different natural- and synthetic-based biodegradable polymers and their fiber-reinforced composites is presented. The review discusses different degradation mechanisms of biopolymer-based composites as well as their sustainability aspects. This review also elucidates current challenges, future opportunities, and emerging applications of biopolymeric sustainable composites in numerous engineering fields. Finally, this review proposes biopolymeric sustainable materials as a propitious solution to the contemporary environmental crisis. • Use of biopolymers has emerged as a new paradigm of the ecological conservation. • Biopolymeric composites are easily degraded under the possible source of degraded environment. • Biopolymers have found their applications in biomedical, food, electronics, cosmetics and other emerging fields. • Further understanding on their mode of action through this comprehensive review will imparts knowledge.

64 citations

Journal ArticleDOI
TL;DR: In this article, the advanced state of synthesis, process integrating biological and thermochemical conversion to produce bioplastics (PBS), physico-chemical and mechanical properties, and the recent applications.

42 citations

Journal ArticleDOI
TL;DR: In this article , a review of natural fiber reinforced hybrid composites that emphasize the dynamic mechanical properties is presented, including loss modulus and storage modulus, damping factor, and glass transition temperature.
Abstract: The concerning waste management issue of natural fibers and the downsides of synthetic fibers have governed natural fibers' utilization as reinforcements in composites. Incorporating a single type of reinforcing fiber does not inevitably produce composites that meet exceptional quality standards, particularly in dynamic mechanical properties. Various studies have demonstrated excellent properties of natural fiber reinforced hybrid composites. Accordingly, this paper aims to review research related to natural fiber reinforced hybrid composites that emphasize the dynamic mechanical properties. A summary for each type of hybrid composites, including thermoset and thermoplastic polymers, biopolymers, nanocomposites, and bionanocomposites was provided. The variables of relevance in this overview are the loss modulus, storage modulus, damping factor, and glass transition temperature. Overall, the reviewed works revealed that lignocellulosic fibers are extensively used to reinforce composites. Nearly all hybridization of multiple reinforcing fibers had synergistic influences on the hybrid composites' dynamic mechanical properties. However, there are several cases whereby the addition of hybrid reinforcing particles leads to a detrimental effect on the composites’ quality. There is a limitless possibility for further improvements of natural fiber reinforced hybrid composites.

33 citations

Journal ArticleDOI
TL;DR: In this paper, a review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.

28 citations

Journal ArticleDOI
01 Apr 2022-Polymers
TL;DR: In this paper , the characterization and performance of jute fibers are reviewed and the main focus is shifted towards research advancements in enhancing physical, mechanical, thermal and tribological properties of the polymeric materials (i.e., synthetic or biobased and thermoplastic or thermoset plastic) reinforced with jute fiber in a variety of forms such as particle, short fiber or woven fabric.
Abstract: The increasing trend of the use of synthetic products may result in an increased level of pollution affecting both the environment and living organisms. Therefore, from the sustainability point of view, natural, renewable and biodegradable materials are urgently needed to replace environmentally harmful synthetic materials. Jute, one of the natural fibers, plays a vital role in developing composite materials that showed potential in a variety of applications such as household, automotive and medical appliances. This paper first reviews the characterization and performance of jute fibers. Subsequently, the main focus is shifted towards research advancements in enhancing physical, mechanical, thermal and tribological properties of the polymeric materials (i.e., synthetic or biobased and thermoplastic or thermoset plastic) reinforced with jute fibers in a variety of forms such as particle, short fiber or woven fabric. It is understood that the physio-mechanical properties of jute-polymer composites largely vary based on the fiber processing and treatment, fiber shape and/or size, fabrication processes, fiber volume fraction, layering sequence within the matrix, interaction of the fiber with the matrix and the matrix materials used. Furthermore, the emerging research on jute fiber, such as nanomaterials from jute, bioplastic packaging, heavy metal absorption, electronics, energy device or medical applications and development of jute fiber composites with 3D printing, is explored. Finally, the key challenges for jute and its derivative products in gaining commercial successes have been highlighted and potential future directions are discussed.

20 citations

References
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of literature on bio-fiber reinforced composites is presented in this paper, where the overall characteristics of reinforcing fibers used in biocomposites, including source, type, structure, composition, as well as mechanical properties, are reviewed.

3,074 citations

Journal ArticleDOI
TL;DR: In this article, the thermal properties, crystallinity index, reactivity, and surface morphology of untreated and chemically modified fibers have been studied using differential scanning calorimetry (DSC), X-ray diffraction (WAXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), respectively.
Abstract: Plant fibers are rich in cellulose and they are a cheap, easily renewable source of fibers with the potential for polymer reinforcement. The presence of surface impurities and the large amount of hydroxyl groups make plant fibers less attractive for reinforcement of polymeric materials. Hemp, sisal, jute, and kapok fibers were subjected to alkalization by using sodium hydroxide. The thermal characteristics, crystallinity index, reactivity, and surface morphology of untreated and chemically modified fibers have been studied using differential scanning calorimetry (DSC), X-ray diffraction (WAXRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), respectively. Following alkalization the DSC showed a rapid degradation of the cellulose between 0.8 and 8% NaOH, beyond which degradation was found to be marginal. There was a marginal drop in the crystallinity index of hemp fiber while sisal, jute, and kapok fibers showed a slight increase in crystallinity at caustic soda concentration of 0.8–30%. FTIR showed that kapok fiber was found to be the most reactive followed by jute, sisal, and then hemp fiber. SEM showed a relatively smooth surface for all the untreated fibers; however, after alkalization, all the fibers showed uneven surfaces. These results show that alkalization modifies plant fibers promoting the development of fiber–resin adhesion, which then will result in increased interfacial energy and, hence, improvement in the mechanical and thermal stability of the composites. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2222–2234, 2002

1,396 citations

Journal ArticleDOI
TL;DR: In this paper, a twin-screw extruder with flax fiber content of 30 and 40 wt.% was used to produce a composite material with high impact strength.

1,370 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of surface treatments applied to natural fibres for advanced composites applications is presented, where the effects of different chemical treatments on cellulosic fibres that are used as reinforcements for thermoset and thermoplastics are studied.
Abstract: This paper provides a comprehensive overview on different surface treatments applied to natural fibres for advanced composites applications. In practice, the major drawbacks of using natural fibres are their high degree of moisture absorption and poor dimensional stability. The primary objective of surface treatments on natural fibres is to maximize the bonding strength so as the stress transferability in the composites. The overall mechanical properties of natural fibre reinforced polymer composites are highly dependent on the morphology, aspect ratio, hydrophilic tendency and dimensional stability of the fibres used. The effects of different chemical treatments on cellulosic fibres that are used as reinforcements for thermoset and thermoplastics are studied. The chemical sources for the treatments include alkali, silane, acetylation, benzoylation, acrylation and acrylonitrile grafting, maleated coupling agents, permanganate, peroxide, isocyanate, stearic acid, sodium chlorite, triazine, fatty acid derivate (oleoyl chloride) and fungal. The significance of chemically-treated natural fibres is seen through the improvement of mechanical strength and dimensional stability of resultant composites as compared with a pristine sample.

1,158 citations

Journal ArticleDOI
TL;DR: An overview of the developments made in the area of biodegradable composites, in terms of market, processing methods, matrix reinforcement systems, morphology, properties and product development is presented in this article.

1,133 citations