scispace - formally typeset
Search or ask a question
Book ChapterDOI

Biopolymer Composites With High Dielectric Performance: Interface Engineering

TL;DR: In this article, the preparation and dielectric behavior of various biopolymer composites is presented, including metal nanoparticles and carbon-based nanofillers such as carbon nanotubes, graphene, etc.
Abstract: In recent years, there is a growing interest in studying the dielectric behavior of biopolymer composites due to their potential application as a dielectric material in various electronic devices such as microchips, transformers, and circuit boards. Conducting electroactive polymer composites have also been investigated for various potential applications which include biological, biomedical, flexible electrodes, display devices, biosensors, and cells for tissue engineering. In this chapter, the preparation and dielectric behavior of various biopolymer composites is presented. These biopolymer composites generally consist of nanoscale metal nanoparticles and carbon-based nanofillers such as carbon nanotubes, graphene, graphene oxide (GO), etc., dispersed into the polymer matrix. The physical and chemical properties of these fillers and their interactions with polymers have a significant effect on the microstructure and the final properties of nanocomposites. The biopolymer composites with excellent dielectric properties show great promise as an energy storage dielectric layer in high-performance capacitor applications such as embedded capacitors. This chapter highlights some of the examples of such biopolymer composites; their processing and dielectric behavior will be discussed in detail.
Citations
More filters
Journal Article
TL;DR: In this article, Boron nitride nanotubes (BNNT)/polyvinyl alcohol (PVA) composite fibers were fabricated via electrospinning so that all BNNTs became aligned in the fiber casting direction.
Abstract: Boron nitride nanotube (BNNT)/polyvinyl alcohol (PVA) composite fibers (<5 vol % BNNTs) were fabricated via electrospinning so that all BNNTs became aligned in the fiber casting direction. A several-fibers-thick ensemble of parallel-arranged contacting fibers made a single polymer sheet. Numerous sheets were then stacked in different ways with respect to the BNNT orientation (all fibers in adjacent sheets were either parallel or alternately rotated 90°) to make multilayer films that were finally hot-pressed. Various BNNT textures were reflected by the corresponding differences in the measured thermal conductivities of the resultant films due to anisotropy of thermal transport in the nanotubes. The highest values (0.54 W/mK) were obtained along the long axes of aligned BNNTs. Somewhat lower values (0.38 W/mK) were documented in films with alternately stacked fibers/tubes. The theoretical thermal conductivity values were estimated using the Nielsen’s model. These show good match with the experimental data. ...

162 citations

Journal ArticleDOI
TL;DR: In this paper, the potential and market stability of gelatin has been discussed and its recent studies are summarised in this paper, focusing on assessing the general utilities of the various sources of collagen as gelatin derivatives.

120 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the recent progress in polymer electrolytes for flexible ZIBs, especially hydrogel electrolytes, including their synthesis and characterization, and provided an insight from lab research to commercialization, relevant challenges, device configurations, and life cycle analysis.
Abstract: Owing to the development of aqueous rechargeable zinc-ion batteries (ZIBs), flexible ZIBs are deemed as potential candidates to power wearable electronics. ZIBs with solid-state polymer electrolytes can not only maintain additional load-bearing properties, but exhibit enhanced electrochemical properties by preventing dendrite formation and inhibiting cathode dissolution. Substantial efforts have been applied to polymer electrolytes by developing solid polymer electrolytes, hydrogel polymer electrolytes, and hybrid polymer electrolytes; however, the research of polymer electrolytes for ZIBs is still immature. Herein, the recent progress in polymer electrolytes is summarized by category for flexible ZIBs, especially hydrogel electrolytes, including their synthesis and characterization. Aiming to provide an insight from lab research to commercialization, the relevant challenges, device configurations, and life cycle analysis are consolidated. As flexible batteries, the majority of polymer electrolytes exploited so far only emphasizes the electrochemical performance but the mechanical behavior and interactions with the electrode materials have hardly been considered. Hence, strategies of combining softness and strength and the integration with electrodes are discussed for flexible ZIBs. A ranking index, combining both electrochemical and mechanical properties, is introduced. Future research directions are also covered to guide research toward the commercialization of flexible ZIBs.

119 citations

Journal ArticleDOI
TL;DR: A systematic review methodology based on the application of this novel technology in the field of drug delivery along with the manufacturing of polypills with varied release profiles and geometries is carried out.

72 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reported the preparation and structure-property relationship of environmentally friendly flexible high-κ polymer nanocomposites, using biodegradable polylactic acid (PLA) as a matrix and core-shell structured BaTiO3 (BT) nanoparticles as highκ filler.
Abstract: Flexible high-dielectric-constant (high-κ) nanocomposite dielectrics comprising polymer matrix and ceramic nanoparticles have important applications in the fields of electrical insulation and energy storage. However, most of the flexible high-κ nanocomposites are fabricated by using nonbiodegradable polymers as matrixes, which may not meet the increasing demands of society for environmental sustainability. In this study, using biodegradable polylactic acid (PLA) as a matrix and core–shell structured BaTiO3 (BT) nanoparticles as high-κ filler, we report the preparation and structure–property relationship of environmentally friendly flexible high-κ polymer nanocomposites. Two types of core–shell structured high-κ nanoparticles [polydopamine-encapsulated BT (BT@PDA) and PLA-encapsulated BT@PDA (BT@PDA@PLA)] as well as as-prepared BT nanoparticles were used as filler of the PLA-based high-κ nanocomposites. It was found that, compared with the as-prepared BT nanocomposites, the core–shell nanoparticle-based co...

69 citations

Journal ArticleDOI
TL;DR: The covalently immobilized heparin on the PPY film was able to retain its bioactivity after 4 days of immersion in PBS and retained sufficient electrical conductivity for electrical stimulation still to be effective for reducing protein adsorption.

68 citations

Journal ArticleDOI
TL;DR: In this article, polyvinyl alcohol/potassium chromate (K2CrO4) composite films were prepared by solution casting technique using distilled water as a solvent, and were further investigated using Fourier transform infrared spectroscopy, ultraviolet-visible spectrograph, X-ray diffraction, thermogravimetric analysis, optical microscopy, scanning electron microscopy and dielectric measurements.
Abstract: Polyvinyl alcohol/potassium chromate (K2CrO4) composite films were prepared by solution casting technique using distilled water as a solvent, and were further investigated using Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, X-ray diffraction, thermogravimetric analysis, optical microscopy, scanning electron microscopy, and dielectric measurements. Microscopic studies reveal that K2CrO4 was homogenously mixed with polyvinyl alcohol matrix due to interfacial interaction between polyvinyl alcohol and K2CrO4. The composite films showed very high dielectric constant and relatively low dielectric loss. Hence, such composite materials with improved dielectric properties could be useful for fabrication of electrical charge storage device.

65 citations

Journal ArticleDOI
TL;DR: A series of chitosan/gelatin composite films were prepared by solvent evaporation and characterized for oxygen permeability, optical transmittance, water absorptivity and mechanical properties as discussed by the authors.
Abstract: A series of chitosan/gelatin composite films were prepared by solvent evaporation and characterized for oxygen permeability, optical transmittance, water absorptivity and mechanical properties. The results indicate that the introduction of gelatin was beneficial to increasing water absorption and that oxygen and solute permeability of chitosan composite film was improved. Chitosan/gelatin composite films are more permeable, transparent, flexible and biocompatible films and could potently be used for contact lens material.

64 citations

Journal ArticleDOI
TL;DR: In this paper, the preparation and characterization of pure and lead oxide (PbO) nanoparticles embedded polyvinyl alcohol (PVA) films by using a colloidal processing technique was discussed.
Abstract: The present article deals with the preparation and characterization of pure and lead oxide (PbO) nanoparticles embedded polyvinyl alcohol (PVA) films by using a colloidal processing technique. PbO nanoparticles were successfully synthesized using the simple precipitation method. Polymer/ceramic-based flexible and self-standing films were obtained and further characterized using various analytical techniques. The mechanical and dielectric properties were also investigated. The Fourier Transform Infrared Spectroscopy (FTIR) results indicate that the structural characterization of PVA is strongly affected by the incorporation of PbO. Thermal analysis results indicate that the thermal stability of the PbO-doped PVA film has improved as compared with the neat PVA film. The mechanical property of nanocomposites has improved significantly due to an increase in filler loadings, indicating that a good interaction exists between PbO nanoparticles and PVA matrix. The dielectric constant of PVA/PbO nanocomposites has significantly improved with comparatively low dielectric loss values, indicating that the nanocomposites can be considered as an attractive material for embedded capacitor applications.

64 citations