scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biorthonormal Formalism for Nonadiabatic Coupled Cluster Dynamics.

12 Jan 2021-Journal of Chemical Theory and Computation (American Chemical Society (ACS))-Vol. 17, Iss: 1, pp 127-138
TL;DR: In this paper, a projected Schrodinger equation for the left and right nuclear wave functions is derived from the Born-Huang expansions of the wave functions, which is invariant under electronic basis transformations, such as normalization of the electronic states.
Abstract: In coupled cluster theory, the electronic states are biorthonormal in the sense that the left states are orthonormal to the right states. Here, we present an extension of this formalism to a left and right total molecular wave function. Starting from left and right Born-Huang expansions, we derive projected Schrodinger equations for the left and right nuclear wave functions. Observables may be extracted from the resulting wave function pair using standard expressions. The formalism is shown to be invariant under electronic basis transformations, such as normalization of the electronic states. Consequently, the nonadiabatic coupling elements can be expressed with biorthonormal electronic wave functions. Calculating normalization factors that scale as full configuration interaction is not necessary, contrary to claims in the literature. For nonadiabatic nuclear dynamics, we need expressions for the derivative couplings in the biorthonormal formalism. These are derived in a Lagrangian framework.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , a review of single-reference time-dependent coupled-cluster (TDCC) theory for simulating laser-driven electronic dynamics in atoms and molecules is presented, along with applications of TDCC methods to the calculation of linear absorption spectra, linear and low-order nonlinear response functions, highly nonlinear high harmonic generation spectra and ionization dynamics.
Abstract: Recent years have witnessed an increasing interest in time-dependent coupled-cluster (TDCC) theory for simulating laser-driven electronic dynamics in atoms and molecules, and for simulating molecular vibrational dynamics. Starting from the time-dependent bivariational principle, we review different flavors of single-reference TDCC theory with either orthonormal static, orthonormal time-dependent, or biorthonormal time-dependent spin orbitals. The time-dependent extension of equation-of-motion coupled-cluster theory is also discussed, along with the applications of TDCC methods to the calculation of linear absorption spectra, linear and low-order nonlinear response functions, highly nonlinear high harmonic generation spectra and ionization dynamics. In addition, the role of TDCC theory in finite-temperature many-body quantum mechanics is briefly described along with a few other application areas. This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Theoretical and Physical Chemistry > Spectroscopy Software > Simulation Methods

5 citations

Journal ArticleDOI
TL;DR: In this article , a time-dependent equation of motion coupled cluster singles and doubles (TD-EOM-CCSD) method is implemented, which uses a reduced basis calculated with the asymmetric band Lanczos algorithm.
Abstract: A time-dependent equation of motion coupled cluster singles and doubles (TD-EOM-CCSD) method is implemented, which uses a reduced basis calculated with the asymmetric band Lanczos algorithm. The approach is used to study weak-field processes in small molecules induced by ultrashort valence pump and core probe pulses. We assess the reliability of the procedure by comparing TD-EOM-CCSD absorption spectra to spectra obtained from the time-dependent coupled-cluster singles and doubles (TDCCSD) method and observe that spectral features can be reproduced for several molecules, at much lower computational times. We discuss how multiphoton absorption and symmetry can be handled in the method and general features of the core-valence separation (CVS) projection technique. We also model the transient absorption of an attosecond X-ray probe pulse by the glycine molecule.

4 citations

Journal ArticleDOI
TL;DR: In this article , the authors present an efficient implementation of analytical non-adiabatic derivative coupling elements for the coupled cluster singles and doubles model, in which the nuclear derivative acts on the right electronic state, where this state is biorthonormal with respect to the set of left states.
Abstract: We present an efficient implementation of analytical non-adiabatic derivative coupling elements for the coupled cluster singles and doubles model. The derivative coupling elements are evaluated in a biorthonormal formulation in which the nuclear derivative acts on the right electronic state, where this state is biorthonormal with respect to the set of left states. This stands in contrast to earlier implementations based on normalized states and a gradient formula for the derivative coupling. As an illustration of the implementation, we determine a minimum energy conical intersection between the nπ* and ππ* states in the nucleobase thymine.

1 citations

References
More filters
Book
01 Jan 1954
TL;DR: Born and Huang's classic work on the dynamics of crystal lattices was published over thirty years ago, and it remains the definitive treatment of the subject as mentioned in this paper. But it is not the most complete work on crystal lattice dynamics.
Abstract: Although Born and Huang's classic work on the dynamics of crystal lattices was published over thirty years ago, the book remains the definitive treatment of the subject. It begins with a brief introduction to atomic forces, lattice vibrations and elasticity, and then breaks off into four sections. The first section deals with the general statistical mechanics of ideal lattices, leading to the electric polarizability and to the scattering of light. The second section deals with the properties of long lattice waves, the third with thermal properties, and the fourth with optical properties.

7,756 citations

Journal ArticleDOI
TL;DR: The coupled cluster singles and doubles model (CCSD) as discussed by the authors is derived algebraically, presenting the full set of equations for a general reference function explicitly in spin-orbital form, and the computational implementation of the CCSD model, which involves cubic and quartic terms, is discussed and results are compared with full CI calculations for H2O and BeH2.
Abstract: The coupled‐cluster singles and doubles model (CCSD) is derived algebraically, presenting the full set of equations for a general reference function explicitly in spin–orbital form. The computational implementation of the CCSD model, which involves cubic and quartic terms, is discussed and results are reported and compared with full CI calculations for H2O and BeH2. We demonstrate that the CCSD exponential ansatz sums higher‐order correlation effects efficiently even for BeH2, near its transition state geometry where quasidegeneracy efforts are quite large, recovering 98% of the full CI correlation energy. For H2O, CCSD plus the fourth‐order triple excitation correction agrees with the full CI energy to 0.5 kcal/mol. Comparisons with low‐order models provide estimates of the effect of the higher‐order terms T1T2, T21T2, T31, and T41 on the correlation energy.

5,603 citations

Journal ArticleDOI
TL;DR: In der Anwendung der Quantentheorie auf die Molekeln kann man folgende Entwicklungsstufen unterscheiden: Das erste Stadium1) ersetzt die zweiatomige Molekel durch das Hantelmodell, das als einfacher „Rotator“ behandelt wird as discussed by the authors.
Abstract: In der Anwendung der Quantentheorie auf die Molekeln kann man folgende Entwicklungsstufen unterscheiden: Das erste Stadium1) ersetzt die zweiatomige Molekel durch das Hantelmodell, das als einfacher „Rotator“ behandelt wird. Mehratomige Molekeln werden in entsprechender Weise als starre „Kreisel“ angesehen.2) Dieser Standpunkt erlaubt es, die einfachsten Gesetze der Bandenspektren und der spezifischen Warme mehratomiger Gase zu erklaren. Das nachste Stadium1) last die Annahme starrer Verbindungen zwischen den Atomen fallen und berucksichtigt die Kernschwingungen, zunachst als harmonische Schwingungen; dabie ergenben sich nach Sponer3) und Kratzer4) Zusammenhange zwischen den einzelnen Banden eines Bandensystems.

4,131 citations

Journal ArticleDOI
TL;DR: In this article, the essential aspects of coupled-cluster theory are explained and illustrated with informative numerical results, showing that the theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules.
Abstract: Today, coupled-cluster theory offers the most accurate results among the practical ab initio electronic-structure theories applicable to moderate-sized molecules. Though it was originally proposed for problems in physics, it has seen its greatest development in chemistry, enabling an extensive range of applications to molecular structure, excited states, properties, and all kinds of spectroscopy. In this review, the essential aspects of the theory are explained and illustrated with informative numerical results.

2,667 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the equation of motion coupled-cluster (EOM•CC) method and its application to molecular systems is presented by exploiting the biorthogonal nature of the theory, it is shown that excited state properties and transition strengths can be evaluated via a generalized expectation value approach that incorporates both the bra and ket state wave functions.
Abstract: A comprehensive overview of the equation of motion coupled‐cluster (EOM‐CC) method and its application to molecular systems is presented. By exploiting the biorthogonal nature of the theory, it is shown that excited state properties and transition strengths can be evaluated via a generalized expectation value approach that incorporates both the bra and ket state wave functions. Reduced density matrices defined by this procedure are given by closed form expressions. For the root of the EOM‐CC effective Hamiltonian that corresponds to the ground state, the resulting equations are equivalent to the usual expressions for normal single‐reference CC density matrices. Thus, the method described in this paper provides a universal definition of coupled‐cluster density matrices, providing a link between EOM‐CC and traditional ground state CC theory.Excitation energy,oscillator strength, and property calculations are illustrated by means of several numerical examples, including comparisons with full configuration interaction calculations and a detailed study of the ten lowest electronically excited states of the cyclic isomer of C4.

2,171 citations