scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Biosensors based on nanomechanical systems

16 Jan 2013-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 42, Iss: 3, pp 1287-1311
TL;DR: This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface: mass, surface stress, effective Young's modulus and viscoelasticity.
Abstract: The advances in micro- and nanofabrication technologies enable the preparation of increasingly smaller mechanical transducers capable of detecting the forces, motion, mechanical properties and masses that emerge in biomolecular interactions and fundamental biological processes. Thus, biosensors based on nanomechanical systems have gained considerable relevance in the last decade. This review provides insight into the mechanical phenomena that occur in suspended mechanical structures when either biological adsorption or interactions take place on their surface. This review guides the reader through the parameters that change as a consequence of biomolecular adsorption: mass, surface stress, effective Young's modulus and viscoelasticity. The mathematical background needed to correctly interpret the output signals from nanomechanical biosensors is also outlined here. Other practical issues reviewed are the immobilization of biomolecular receptors on the surface of nanomechanical systems and methods to attain that in large arrays of sensors. We then describe some relevant realizations of biosensor devices based on nanomechanical systems that harness some of the mechanical effects cited above. We finally discuss the intrinsic detection limits of the devices and the limitation that arises from non-specific adsorption.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this progress report, a brief overview on the current state-of-the-art of experimental and theoretical studies of nanomaterials displaying spin transition is presented, and detailed analysis and discussions in terms of finite size effects and other phenomena inherent to the reduced size scale are provided.
Abstract: Nanoscale spin crossover materials capable of undergoing reversible switching between two electronic configurations with markedly different physical properties are excellent candidates for various technological applications. In particular, they can serve as active materials for storing and processing information in photonic, mechanical, electronic, and spintronic devices as well as for transducing different forms of energy in sensors and actuators. In this progress report, a brief overview on the current state-of-the-art of experimental and theoretical studies of nanomaterials displaying spin transition is presented. Based on these results, a detailed analysis and discussions in terms of finite size effects and other phenomena inherent to the reduced size scale are provided. Finally, recent research devices using spin crossover complexes are highlighted, emphasizing both challenges and prospects.

352 citations

Journal ArticleDOI
01 Dec 2015-Sensors
TL;DR: The integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device.
Abstract: A biosensor can be defined as a compact analytical device or unit incorporating a biological or biologically derived sensitive recognition element immobilized on a physicochemical transducer to measure one or more analytes. Microfluidic systems, on the other hand, provide throughput processing, enhance transport for controlling the flow conditions, increase the mixing rate of different reagents, reduce sample and reagents volume (down to nanoliter), increase sensitivity of detection, and utilize the same platform for both sample preparation and detection. In view of these advantages, the integration of microfluidic and biosensor technologies provides the ability to merge chemical and biological components into a single platform and offers new opportunities for future biosensing applications including portability, disposability, real-time detection, unprecedented accuracies, and simultaneous analysis of different analytes in a single device. This review aims at representing advances and achievements in the field of microfluidic-based biosensing. The review also presents examples extracted from the literature to demonstrate the advantages of merging microfluidic and biosensing technologies and illustrate the versatility that such integration promises in the future biosensing for emerging areas of biological engineering, biomedical studies, point-of-care diagnostics, environmental monitoring, and precision agriculture.

319 citations

Journal ArticleDOI
TL;DR: The Societe Francaise de Chimie, die Gesellschaft Deutscher Chemiker und der Springer-Verlag haben die Zeitschrift „Analytical and Bioanalytical Chemistry” gegrundet as mentioned in this paper.
Abstract: Die Societe Francaise de Chimie, die Gesellschaft Deutscher Chemiker und der Springer-Verlag haben die Zeitschrift „Analytical and Bioanalytical Chemistry” gegrundet.

317 citations

Journal ArticleDOI
TL;DR: The advances of biosensor technologies for infectious disease diagnostics are reviewed and the critical challenges that need to be overcome are discussed in order to implement integrated diagnostic biosensors in real world settings.
Abstract: Rapid diagnosis of infectious diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment Recent advances in biosensor technologies have potential to deliver point-of-care diagnostics that match or surpass conventional standards in regards to time, accuracy and cost Broadly classified as either label-free or labeled, modern biosensors exploit micro- and nanofabrication technologies and diverse sensing strategies including optical, electrical and mechanical transducers Despite clinical need, translation of biosensors from research laboratories to clinical applications has remained limited to a few notable examples, such as the glucose sensor Challenges to be overcome include sample preparation, matrix effects and system integration We review the advances of biosensors for infectious disease diagnostics and discuss the critical challenges that need to be overcome in order to implement integrated diagnostic biosensors in real world settings

292 citations

Journal ArticleDOI
TL;DR: This review summarizes recent advances in the synthesis, assembly, and applications of nanoengineered reporting and transducing components critical for efficient biosensing, and envision the exciting potential of high-performance nanomaterials that will cause disruptive improvements in the field of biosensing.
Abstract: The robust, sensitive, and selective detection of targeted biomolecules in their native environment by prospective nanostructures holds much promise for real-time, accurate, and high throughput biosensing. However, in order to be competitive, current biosensor nanotechnologies need significant improvements, especially in specificity, integration, throughput rate, and long-term stability in complex bioenvironments. Advancing biosensing nanotechnologies in chemically “noisy” bioenvironments require careful engineering of nanoscale components that are highly sensitive, biorecognition ligands that are capable of exquisite selective binding, and seamless integration at a level current devices have yet to achieve. This review summarizes recent advances in the synthesis, assembly, and applications of nanoengineered reporting and transducing components critical for efficient biosensing. First, major classes of nanostructured components, both inorganic reporters and organic transducers, are discussed in the contex...

242 citations

References
More filters
Journal ArticleDOI
TL;DR: It is well known that metallic films deposited electrolytically are in many cases liable to peel off if deposited to any considerable thickness as discussed by the authors, especially if it does not adhere very tightly to the body on which it is deposited.
Abstract: It is well known that metallic films deposited electrolytically are in many cases liable to peel off if deposited to any considerable thickness. This is the case with nickel which, when deposited over a certain thickness, will curl up into beautiful close rolls, especially if it does not adhere very tightly to the body on which it is deposited. For example, if a piece of glass is silvered by any of the usual silvering solutions, and then nickel is deposited on the silver, it is found that the nickel and silver peel off the glass in close tight rolls almost at once. In ‘Practical Electro-Chemistry,' by Bertram Blount, reference is made on pp. 114 and 272 to the tendency of nickel to peel off, and it is stated that it “will peel—spontaneously and without assignable cause” (p. 272), but that a thick coating can be obtained by keeping the solution at between 50° and 90°C. The late Earl of Rosse tried, about 1865, to make flat mirrors by coating glass with silver chemically, and then electroplating with copper; but he found that, owing to the “contraction” of the copper film, it became detached from the glass. I have had the' same experience in protecting silver 61ms in searchlight reflectors by a film of electro-deposited copper, it being found that if the film of copper is more than 0.01 mm. thick peeling is apt to take place.

4,477 citations

Journal ArticleDOI
TL;DR: A review of carbon-nanotubes (CNT) based electrochemical biosensors can be found in this paper, where common designs of CNT-based sensors are discussed, along with practical examples of such devices.
Abstract: This review addresses recent advances in carbon-nanotubes (CNT) based electrochemical biosensors. The unique chemical and physical properties of CNT have paved the way to new and improved sensing devices, in general, and electrochemical biosensors, in particular. CNT-based electrochemical transducers offer substantial improvements in the performance of amperometric enzyme electrodes, immunosensors and nucleic-acid sensing devices. The greatly enhanced electrochemical reactivity of hydrogen peroxide and NADH at CNT-modified electrodes makes these nanomaterials extremely attractive for numerous oxidase- and dehydrogenase-based amperometric biosensors. Aligned CNT “forests” can act as molecular wires to allow efficient electron transfer between the underlying electrode and the redox centers of enzymes. Bioaffinity devices utilizing enzyme tags can greatly benefit from the enhanced response of the biocatalytic-reaction product at the CNT transducer and from CNT amplification platforms carrying multiple tags. Common designs of CNT-based biosensors are discussed, along with practical examples of such devices. The successful realization of CNT-based biosensors requires proper control of their chemical and physical properties, as well as their functionalization and surface immobilization.

2,170 citations

Journal ArticleDOI
TL;DR: In this article, a frequency modulation (FM) technique has been demonstrated which enhances the sensitivity of attractive mode force microscopy by an order of magnitude or more, which is made possible by operating in a moderate vacuum (<10−3 Torr).
Abstract: A new frequency modulation (FM) technique has been demonstrated which enhances the sensitivity of attractive mode force microscopy by an order of magnitude or more. Increased sensitivity is made possible by operating in a moderate vacuum (<10−3 Torr), which increases the Q of the vibrating cantilever. In the FM technique, the cantilever serves as the frequency determining element of an oscillator. Force gradients acting on the cantilever cause instantaneous frequency modulation of the oscillator output, which is demodulated with a FM detector. Unlike conventional ‘‘slope detection,’’ the FM technique offers increased sensitivity through increased Q without restricting system bandwidth. Experimental comparisons of FM detection in vacuum (Q∼50 000) versus slope detection in air (Q∼100) demonstrated an improvement of more than 10 times in sensitivity for a fixed bandwidth. This improvement is evident in images of magnetic transitions on a thin‐film CoPtCr magnetic disk. In the future, the increased sensitivi...

2,155 citations

Journal ArticleDOI
20 Mar 1997-Nature
TL;DR: It is shown that a single molecule of F1-ATPase acts as a rotary motor, the smallest known, by direct observation of its motion by attaching a fluorescent actin filament to the γ-subunit as a marker, which enabled us to observe this motion directly.
Abstract: Cells employ a variety of linear motors, such as myosin, kinesin and RNA polymerase, which move along and exert force on a filamentous structure. But only one rotary motor has been investigated in detail, the bacterial flagellum (a complex of about 100 protein molecules). We now show that a single molecule of F1-ATPase acts as a rotary motor, the smallest known, by direct observation of its motion. A central rotor of radius approximately 1 nm, formed by its gamma-subunit, turns in a stator barrel of radius approximately 5nm formed by three alpha- and three beta-subunits. F1-ATPase, together with the membrane-embedded proton-conducting unit F0, forms the H+-ATP synthase that reversibly couples transmembrane proton flow to ATP synthesis/hydrolysis in respiring and photosynthetic cells. It has been suggested that the gamma-subunit of F1-ATPase rotates within the alphabeta-hexamer, a conjecture supported by structural, biochemical and spectroscopic studies. We attached a fluorescent actin filament to the gamma-subunit as a marker, which enabled us to observe this motion directly. In the presence of ATP, the filament rotated for more than 100 revolutions in an anticlockwise direction when viewed from the 'membrane' side. The rotary torque produced reached more than 40 pN nm(-1) under high load.

2,131 citations

Journal ArticleDOI
TL;DR: This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms, and focuses on the optical biosENSors that utilize the refractive index change as the sensing transduction signal.

2,060 citations