scispace - formally typeset
Search or ask a question

BioTechniques 30th Anniversary GEM Continuous Fluorescence Monitoring of Rapid Cycle DNA Amplification

TL;DR: Continuous within-cycle monitoring allows rapid optimization of amplification conditions and should be particularly useful in developing new, standardized clinical assays.
Abstract: Rapid cycle DNA amplification was continuously monitored by three different fluorescence techniques. Fluorescence was monitored by (i) the double-strand-specific dye SYBR Green I, (ii) a decrease in fluorescein quenching by rhodamine after exonuclease cleavage of a dual-labeled hydrolysis probe and (iii) resonance energy transfer of fluorescein to Cy5 by adjacent hybridization probes. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy number. The sensitivity of SYBR Green I detection is limited by nonspecific product formation. Use of a single exonuclease hydrolysis probe or two adjacent hybridization probes offers increasing levels of specificity. In contrast to fluorescence measurement once per cycle, continuous monitoring throughout each cycle monitors the temperature dependence of fluorescence. The cumulative, irreversible signal of hydrolysis probes can be distinguished easily from the temperature-dependent, reversible signal of hybridization probes. By using SYBR Green I, product denaturation, annealing and extension can be followed within each cycle. Substantial product-to-product annealing occurs during later amplification cycles, suggesting that product annealing is a major cause of the plateau effect. Continuous within-cycle monitoring allows rapid optimization of amplification conditions and should be particularly useful in developing new, standardized clinical assays.
Citations
More filters
Journal ArticleDOI
TL;DR: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency.
Abstract: Background: Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader’s ability to evaluate critically the quality of the results presented or to repeat the experiments. Content: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Summary: Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.

12,469 citations

Journal ArticleDOI
TL;DR: The technical aspects involved are discussed, conventional and kinetic RT-PCR methods for quantitating gene expression are contrasted, and the usefulness of these assays are illustrated by demonstrating the significantly different levels of transcription between individuals of the housekeeping gene family, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).
Abstract: The reverse transcription polymerase chain reaction (RT-PCR) is the most sensitive method for the detection of low-abundance mRNA, often obtained from limited tissue samples. However, it is a complex technique, there are substantial problems associated with its true sensitivity, reproducibility and specificity and, as a quantitative method, it suffers from the problems inherent in PCR. The recent introduction of fluorescence-based kinetic RT-PCR procedures significantly simplifies the process of producing reproducible quantification of mRNAs and promises to overcome these limitations. Nevertheless, their successful application depends on a clear understanding of the practical problems, and careful experimental design, application and validation remain essential for accurate quantitative measurements of transcription. This review discusses the technical aspects involved, contrasts conventional and kinetic RT-PCR methods for quantitating gene expression and compares the different kinetic RT-PCR systems. It illustrates the usefulness of these assays by demonstrating the significantly different levels of transcription between individuals of the housekeeping gene family, glyceraldehyde-3-phosphate-dehydrogenase (GAPDH).

4,100 citations

Journal ArticleDOI
TL;DR: This review discusses the key components of a real-time PCR experiment, including one-step or two-step PCR, absolute versus relative quantitation, mathematical models available for Relative quantitation and amplification efficiency calculations, types of normalization or data correction, and detection chemistries.
Abstract: Real-time PCR has become one of the most widely used methods of gene quantitation because it has a large dynamic range, boasts tremendous sensitivity, can be highly sequence-specific, has little to no post-amplification processing, and is amenable to increasing sample throughput. However, optimal benefit from these advantages requires a clear understanding of the many options available for running a real-time PCR experiment. Starting with the theory behind real-time PCR, this review discusses the key components of a real-time PCR experiment, including one-step or two-step PCR, absolute versus relative quantitation, mathematical models available for relative quantitation and amplification efficiency calculations, types of normalization or data correction, and detection chemistries. In addition, the many causes of variation as well as methods to calculate intra- and inter-assay variation are addressed.

1,739 citations

Journal ArticleDOI
TL;DR: In this review, the importance of RNA quality for the qRT-PCR was analyzed by determining the RNA quality of different bovine tissues and cell culture and on the basis of the derived results it can be argued that qRT -PCR performance is affected by the RNA integrity and PCR efficiency in general is not affected byThe RNA integrity.

1,380 citations


Cites background from "BioTechniques 30th Anniversary GEM ..."

  • ...It is well known, that normalization by an internal reference gene reduce or even diminish tissue derived effects on qRT-PCR (Wittwer et al., 1997)....

    [...]

Journal ArticleDOI
TL;DR: The background, advantages and limitations of real-time PCR are described, the literature as it applies to virus detection in the routine and research laboratory is reviewed and the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.
Abstract: The use of the polymerase chain reaction (PCR) in molecular diagnostics has increased to the point where it is now accepted as the gold standard for detecting nucleic acids from a number of origins and it has become an essential tool in the research laboratory. Real-time PCR has engendered wider acceptance of the PCR due to its improved rapidity, sensitivity, reproducibility and the reduced risk of carry-over contamination. There are currently five main chemistries used for the detection of PCR product during real-time PCR. These are the DNA binding fluorophores, the 5' endonuclease, adjacent linear and hairpin oligoprobes and the self-fluorescing amplicons, which are described in detail. We also discuss factors that have restricted the development of multiplex real-time PCR as well as the role of real-time PCR in quantitating nucleic acids. Both amplification hardware and the fluorogenic detection chemistries have evolved rapidly as the understanding of real-time PCR has developed and this review aims to update the scientist on the current state of the art. We describe the background, advantages and limitations of real-time PCR and we review the literature as it applies to virus detection in the routine and research laboratory in order to focus on one of the many areas in which the application of real-time PCR has provided significant methodological benefits and improved patient outcomes. However, the technology discussed has been applied to other areas of microbiology as well as studies of gene expression and genetic disease.

1,341 citations


Cites background or methods from "BioTechniques 30th Anniversary GEM ..."

  • ...Because the emissions from fluorescent chemistries are temperature dependent, data is generally acquired only once per cycle at the same temperature in order to monitor amplicon yield (45)....

    [...]

  • ...The use of a pair of adjacent, fluorogenic hybridisation oligoprobes was first described in the late 1980s (43,44) and, now known as ‘HybProbes’, they have become the method of choice for the LightCyclerTM (Roche Molecular Biochemicals, Germany), a capillary-based, microvolume fluorimeter and thermocycler with rapid temperature control (20,45)....

    [...]

References
More filters
Journal ArticleDOI
29 Jan 1988-Science
TL;DR: A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction, which significantly improves the specificity, yield, sensitivity, and length of products that can be amplified.
Abstract: A thermostable DNA polymerase was used in an in vitro DNA amplification procedure, the polymerase chain reaction. The enzyme, isolated from Thermus aquaticus, greatly simplifies the procedure and, by enabling the amplification reaction to be performed at higher temperatures, significantly improves the specificity, yield, sensitivity, and length of products that can be amplified. Single-copy genomic sequences were amplified by a factor of more than 10 million with very high specificity, and DNA segments up to 2000 base pairs were readily amplified. In addition, the method was used to amplify and detect a target DNA molecule present only once in a sample of 10(5) cells.

17,663 citations

Journal ArticleDOI
TL;DR: Novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions that undergo a spontaneous conforma-tional change when they hybridize to their targets are developed.
Abstract: We have developed novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions. These probes undergo a spontaneous fluorogenic conformational change when they hybridize to their targets. Only perfectly complementary targets elicit this response, as hybridization does not occur when the target contains a mismatched nucleotide or a deletion. The probes are particularly suited for monitoring the synthesis of specific nucleic acids in real time. When used in nucleic acid amplification assays, gene detection is homogeneous and sensitive, and can be carried out in a sealed tube. When introduced into living cells, these probes should enable the origin, movement, and fate of specific mRNAs to be traced.

4,584 citations

Journal ArticleDOI
TL;DR: The 5'----3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal concomitantly with amplification.
Abstract: The 5'----3' exonuclease activity of the thermostable enzyme Thermus aquaticus DNA polymerase may be employed in a polymerase chain reaction product detection system to generate a specific detectable signal concomitantly with amplification. An oligonucleotide probe, nonextendable at the 3' end, labeled at the 5' end, and designed to hybridize within the target sequence, is introduced into the polymerase chain reaction assay. Annealing of probe to one of the polymerase chain reaction product strands during the course of amplification generates a substrate suitable for exonuclease activity. During amplification, the 5'----3' exonuclease activity of T. aquaticus DNA polymerase degrades the probe into smaller fragments that can be differentiated from undegraded probe. The assay is sensitive and specific and is a significant improvement over more cumbersome detection methods.

3,050 citations

Journal ArticleDOI
TL;DR: Results obtained with this approach indicate that a kinetic approach to PCR analysis can quantitate DNA sensitively, selectively and over a large dynamic range.
Abstract: We describe a simple, quantitative assay for any amplifiable DNA sequence that uses a video camera to monitor multiple polymerase chain reactions (PCRs) simultaneously over the course of thermocycling. The video camera detects the accumulation of double-stranded DNA (dsDNA) in each PCR using the increase in the fluorescence of ethidium bromide (EtBr) that results from its binding duplex DNA. The kinetics of fluorescence accumulation during thermocycling are directly related to the starting number of DNA copies. The fewer cycles necessary to produce a detectable fluorescence, the greater the number of target sequences. Results obtained with this approach indicate that a kinetic approach to PCR analysis can quantitate DNA sensitively, selectively and over a large dynamic range. This approach also provides a means of determining the effect of different reaction conditions on the efficacy of the amplification and so can provide insight into fundamental PCR processes.

2,366 citations

Journal ArticleDOI
Kenneth J. Livak1, S. J. A. Flood, J Marmaro, W Giusti, K Deetz 
TL;DR: It is proposed that the larger signal in the 5' nuclease PCR assay is caused by increased likelihood of cleavage by Taq DNA polymerase when the probe is hybridized to a template strand during PCR.
Abstract: The 5' nuclease PCR assay detects the accumulation of specific PCR product by hybridization and cleavage of a double-labeled fluorogenic probe during the amplification reaction. The probe is an oligonucleotide with both a reporter fluorescent dye and a quencher dye attached. An increase in reporter fluorescence intensity indicates that the probe has hybridized to the target PCR product and has been cleaved by the 5'-->3' nucleolytic activity of Taq DNA polymerase. In this study, probes with the quencher dye attached to an internal nucleotide were compared with probes with the quencher dye attached to the 3'-end nucleotide. In all cases, the reporter dye was attached to the 5' end. All intact probes showed quenching of the reporter fluorescence. In general, probes with the quencher dye attached to the 3'-end nucleotide exhibited a larger signal in the 5' nuclease PCR assay than the internally labeled probes. It is proposed that the larger signal is caused by increased likelihood of cleavage by Taq DNA polymerase when the probe is hybridized to a template strand during PCR. Probes with the quencher dye attached to the 3'-end nucleotide also exhibited an increase in reporter fluorescence intensity when hybridized to a complementary strand. Thus, oligonucleotides with reporter and quencher dyes attached at opposite ends can be used as homogeneous hybridization probes.

1,882 citations