scispace - formally typeset
Search or ask a question
Journal Article

Black holes as mirrors: quantum information in random subsystems

12 Mar 2008-Bulletin of the American Physical Society (American Physical Society)-
TL;DR: In this article, the information retrieval from evaporating black holes is studied under the assumption that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation.
Abstract: We study information retrieval from evaporating black holes, assuming that the internal dynamics of a black hole is unitary and rapidly mixing, and assuming that the retriever has unlimited control over the emitted Hawking radiation. If the evaporation of the black hole has already proceeded past the ``half-way'' point, where half of the initial entropy has been radiated away, then additional quantum information deposited in the black hole is revealed in the Hawking radiation very rapidly. Information deposited prior to the half-way point remains concealed until the half-way point, and then emerges quickly. These conclusions hold because typical local quantum circuits are efficient encoders for quantum error-correcting codes that nearly achieve the capacity of the quantum erasure channel. Our estimate of a black hole's information retention time, based on speculative dynamical assumptions, is just barely compatible with the black hole complementarity hypothesis.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used holography to study sensitive dependence on initial conditions in strongly coupled field theories and showed that the effect of the early infalling quanta relative to the t = 0 slice creates a shock wave that destroys the local two-sided correlations present in the unperturbed state.
Abstract: We use holography to study sensitive dependence on initial conditions in strongly coupled field theories. Specifically, we mildly perturb a thermofield double state by adding a small number of quanta on one side. If these quanta are released a scrambling time in the past, they destroy the local two-sided correlations present in the unperturbed state. The corresponding bulk geometry is a two-sided AdS black hole, and the key effect is the blueshift of the early infalling quanta relative to the t = 0 slice, creating a shock wave. We comment on string- and Planck-scale corrections to this setup, and discuss points that may be relevant to the firewall controversy.

1,589 citations


Cites methods from "Black holes as mirrors: quantum inf..."

  • ...J H E P 0 3 ( 2 0 1 4 ) 0 6 7 identical to that of Page, and we will include the discussion for completeness, following the computationally efficient norm approach of [11]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors show that the EPR pair can be interpreted as maximally entangled states of two black holes, and they suggest that similar bridges might be present for more general entangled states.
Abstract: General relativity contains solutions in which two distant black holes are connected through the interior via a wormhole, or Einstein-Rosen bridge. These solutions can be interpreted as maximally entangled states of two black holes that form a complex EPR pair. We suggest that similar bridges might be present for more general entangled states. In the case of entangled black holes one can formulate versions of the AMPS(S) paradoxes and resolve them. This suggests possible resolutions of the firewall paradoxes for more general situations.

1,446 citations


Cites background from "Black holes as mirrors: quantum inf..."

  • ...se errors act in a simple way in the radiation basis, which we view as the computational basis. Because the radiation system is in a random state one expects the encoding of A 35 to be fault-tolerant [34]. This means that is it possible to correct the errors. One can correct errors which act on less than n=4 qubits [36]. For the case that we measure all of the outside radiation modes, we do not know w...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors argue that the following three statements cannot all be true: (i) Hawking radiation is in a pure state, (ii) the information carried by the radiation is emitted from the region near the horizon, with low energy effective field theory valid beyond some microscopic distance from the horizon.
Abstract: We argue that the following three statements cannot all be true: (i) Hawking radiation is in a pure state, (ii) the information carried by the radiation is emitted from the region near the horizon, with low energy effective field theory valid beyond some microscopic distance from the horizon, and (iii) the infalling observer encounters nothing unusual at the horizon. Perhaps the most conservative resolution is that the infalling observer burns up at the horizon. Alternatives would seem to require novel dynamics that nevertheless cause notable violations of semiclassical physics at macroscopic distances from the horizon.

1,201 citations


Cites background from "Black holes as mirrors: quantum inf..."

  • ...[15, 6], we make the division after the Page time when the black hole has emitted half of its initial Bekenstein-Hawking entropy; we will refer to this as an ‘old’ black hole....

    [...]

  • ...After the black hole scrambling time [6, 7], almost every small subsystem of the black hole is in an almost maximally mixed state....

    [...]

  • ...This time scale has an interesting resonance with ideas from quantum information theory and from Matrix theory [6, 7, 8, 9], which suggest that it may actually be achieved....

    [...]

  • ...[6], that the observer knows the initial state of the black hole and also the black hole S-matrix....

    [...]

Journal ArticleDOI
TL;DR: In this paper, it is shown that small corrections to the leading order Hawking computation cannot remove the entanglement between the radiation and the hole, and that one cannot explain away the information paradox by invoking AdS/CFT duality.
Abstract: The black hole information paradox is a very poorly understood problem. It is often believed that Hawking's argument is not precisely formulated, and a more careful accounting of naturally occurring quantum corrections will allow the radiation process to become unitary. We show that such is not the case, by proving that small corrections to the leading order Hawking computation cannot remove the entanglement between the radiation and the hole. We formulate Hawking's argument as a 'theorem': assuming 'traditional' physics at the horizon and usual assumptions of locality we will be forced into mixed states or remnants. We also argue that one cannot explain away the problem by invoking AdS/CFT duality. We conclude with recent results on the quantum physics of black holes which show that the interior of black holes have a 'fuzzball' structure. This nontrivial structure of microstates resolves the information paradox and gives a qualitative picture of how classical intuition can break down in black hole physics.

1,024 citations

Journal ArticleDOI
TL;DR: The hypothesis that black holes are the fastest computers in nature is discussed and the conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that is called a Wheeler-DeWitt patch is illustrated.
Abstract: We conjecture that the quantum complexity of a holographic state is dual to the action of a certain spacetime region that we call a Wheeler-DeWitt patch. We illustrate and test the conjecture in the context of neutral, charged, and rotating black holes in anti-de Sitter spacetime, as well as black holes perturbed with static shells and with shock waves. This conjecture evolved from a previous conjecture that complexity is dual to spatial volume, but appears to be a major improvement over the original. In light of our results, we discuss the hypothesis that black holes are the fastest computers in nature.

933 citations


Cites background from "Black holes as mirrors: quantum inf..."

  • ...Not only does the bulk shock wave calculation successfully reproduce the chaotic growth of complexity in the boundary state, it also reproduces the partial cancellation that occurs during the time it takes the perturbation to spread over the whole system (the “scrambling time” [16,17])....

    [...]

References
More filters
Book
01 Jan 1991
TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Abstract: Preface to the Second Edition. Preface to the First Edition. Acknowledgments for the Second Edition. Acknowledgments for the First Edition. 1. Introduction and Preview. 1.1 Preview of the Book. 2. Entropy, Relative Entropy, and Mutual Information. 2.1 Entropy. 2.2 Joint Entropy and Conditional Entropy. 2.3 Relative Entropy and Mutual Information. 2.4 Relationship Between Entropy and Mutual Information. 2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information. 2.6 Jensen's Inequality and Its Consequences. 2.7 Log Sum Inequality and Its Applications. 2.8 Data-Processing Inequality. 2.9 Sufficient Statistics. 2.10 Fano's Inequality. Summary. Problems. Historical Notes. 3. Asymptotic Equipartition Property. 3.1 Asymptotic Equipartition Property Theorem. 3.2 Consequences of the AEP: Data Compression. 3.3 High-Probability Sets and the Typical Set. Summary. Problems. Historical Notes. 4. Entropy Rates of a Stochastic Process. 4.1 Markov Chains. 4.2 Entropy Rate. 4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph. 4.4 Second Law of Thermodynamics. 4.5 Functions of Markov Chains. Summary. Problems. Historical Notes. 5. Data Compression. 5.1 Examples of Codes. 5.2 Kraft Inequality. 5.3 Optimal Codes. 5.4 Bounds on the Optimal Code Length. 5.5 Kraft Inequality for Uniquely Decodable Codes. 5.6 Huffman Codes. 5.7 Some Comments on Huffman Codes. 5.8 Optimality of Huffman Codes. 5.9 Shannon-Fano-Elias Coding. 5.10 Competitive Optimality of the Shannon Code. 5.11 Generation of Discrete Distributions from Fair Coins. Summary. Problems. Historical Notes. 6. Gambling and Data Compression. 6.1 The Horse Race. 6.2 Gambling and Side Information. 6.3 Dependent Horse Races and Entropy Rate. 6.4 The Entropy of English. 6.5 Data Compression and Gambling. 6.6 Gambling Estimate of the Entropy of English. Summary. Problems. Historical Notes. 7. Channel Capacity. 7.1 Examples of Channel Capacity. 7.2 Symmetric Channels. 7.3 Properties of Channel Capacity. 7.4 Preview of the Channel Coding Theorem. 7.5 Definitions. 7.6 Jointly Typical Sequences. 7.7 Channel Coding Theorem. 7.8 Zero-Error Codes. 7.9 Fano's Inequality and the Converse to the Coding Theorem. 7.10 Equality in the Converse to the Channel Coding Theorem. 7.11 Hamming Codes. 7.12 Feedback Capacity. 7.13 Source-Channel Separation Theorem. Summary. Problems. Historical Notes. 8. Differential Entropy. 8.1 Definitions. 8.2 AEP for Continuous Random Variables. 8.3 Relation of Differential Entropy to Discrete Entropy. 8.4 Joint and Conditional Differential Entropy. 8.5 Relative Entropy and Mutual Information. 8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information. Summary. Problems. Historical Notes. 9. Gaussian Channel. 9.1 Gaussian Channel: Definitions. 9.2 Converse to the Coding Theorem for Gaussian Channels. 9.3 Bandlimited Channels. 9.4 Parallel Gaussian Channels. 9.5 Channels with Colored Gaussian Noise. 9.6 Gaussian Channels with Feedback. Summary. Problems. Historical Notes. 10. Rate Distortion Theory. 10.1 Quantization. 10.2 Definitions. 10.3 Calculation of the Rate Distortion Function. 10.4 Converse to the Rate Distortion Theorem. 10.5 Achievability of the Rate Distortion Function. 10.6 Strongly Typical Sequences and Rate Distortion. 10.7 Characterization of the Rate Distortion Function. 10.8 Computation of Channel Capacity and the Rate Distortion Function. Summary. Problems. Historical Notes. 11. Information Theory and Statistics. 11.1 Method of Types. 11.2 Law of Large Numbers. 11.3 Universal Source Coding. 11.4 Large Deviation Theory. 11.5 Examples of Sanov's Theorem. 11.6 Conditional Limit Theorem. 11.7 Hypothesis Testing. 11.8 Chernoff-Stein Lemma. 11.9 Chernoff Information. 11.10 Fisher Information and the Cram-er-Rao Inequality. Summary. Problems. Historical Notes. 12. Maximum Entropy. 12.1 Maximum Entropy Distributions. 12.2 Examples. 12.3 Anomalous Maximum Entropy Problem. 12.4 Spectrum Estimation. 12.5 Entropy Rates of a Gaussian Process. 12.6 Burg's Maximum Entropy Theorem. Summary. Problems. Historical Notes. 13. Universal Source Coding. 13.1 Universal Codes and Channel Capacity. 13.2 Universal Coding for Binary Sequences. 13.3 Arithmetic Coding. 13.4 Lempel-Ziv Coding. 13.5 Optimality of Lempel-Ziv Algorithms. Compression. Summary. Problems. Historical Notes. 14. Kolmogorov Complexity. 14.1 Models of Computation. 14.2 Kolmogorov Complexity: Definitions and Examples. 14.3 Kolmogorov Complexity and Entropy. 14.4 Kolmogorov Complexity of Integers. 14.5 Algorithmically Random and Incompressible Sequences. 14.6 Universal Probability. 14.7 Kolmogorov complexity. 14.9 Universal Gambling. 14.10 Occam's Razor. 14.11 Kolmogorov Complexity and Universal Probability. 14.12 Kolmogorov Sufficient Statistic. 14.13 Minimum Description Length Principle. Summary. Problems. Historical Notes. 15. Network Information Theory. 15.1 Gaussian Multiple-User Channels. 15.2 Jointly Typical Sequences. 15.3 Multiple-Access Channel. 15.4 Encoding of Correlated Sources. 15.5 Duality Between Slepian-Wolf Encoding and Multiple-Access Channels. 15.6 Broadcast Channel. 15.7 Relay Channel. 15.8 Source Coding with Side Information. 15.9 Rate Distortion with Side Information. 15.10 General Multiterminal Networks. Summary. Problems. Historical Notes. 16. Information Theory and Portfolio Theory. 16.1 The Stock Market: Some Definitions. 16.2 Kuhn-Tucker Characterization of the Log-Optimal Portfolio. 16.3 Asymptotic Optimality of the Log-Optimal Portfolio. 16.4 Side Information and the Growth Rate. 16.5 Investment in Stationary Markets. 16.6 Competitive Optimality of the Log-Optimal Portfolio. 16.7 Universal Portfolios. 16.8 Shannon-McMillan-Breiman Theorem (General AEP). Summary. Problems. Historical Notes. 17. Inequalities in Information Theory. 17.1 Basic Inequalities of Information Theory. 17.2 Differential Entropy. 17.3 Bounds on Entropy and Relative Entropy. 17.4 Inequalities for Types. 17.5 Combinatorial Bounds on Entropy. 17.6 Entropy Rates of Subsets. 17.7 Entropy and Fisher Information. 17.8 Entropy Power Inequality and Brunn-Minkowski Inequality. 17.9 Inequalities for Determinants. 17.10 Inequalities for Ratios of Determinants. Summary. Problems. Historical Notes. Bibliography. List of Symbols. Index.

45,034 citations


Additional excerpts

  • ...40 25 v2 [ he p- th ] 2 1 Se p...

    [...]

Journal ArticleDOI
28 Oct 1982-Nature
TL;DR: In this article, the linearity of quantum mechanics has been shown to prevent the replication of a photon of definite polarization in the presence of an excited atom, and the authors show that this conclusion holds for all quantum systems.
Abstract: If a photon of definite polarization encounters an excited atom, there is typically some nonvanishing probability that the atom will emit a second photon by stimulated emission. Such a photon is guaranteed to have the same polarization as the original photon. But is it possible by this or any other process to amplify a quantum state, that is, to produce several copies of a quantum system (the polarized photon in the present case) each having the same state as the original? If it were, the amplifying process could be used to ascertain the exact state of a quantum system: in the case of a photon, one could determine its polarization by first producing a beam of identically polarized copies and then measuring the Stokes parameters1. We show here that the linearity of quantum mechanics forbids such replication and that this conclusion holds for all quantum systems.

4,544 citations

Journal ArticleDOI
TL;DR: The Bekenstein-Hawking area entropy relation S BH = A 4 was derived for a class of five-dimensional extremal black holes in string theory by counting the degeneracy of BPS solition bound states.

3,497 citations


"Black holes as mirrors: quantum inf..." refers background in this paper

  • ...Is the information consumed by a black hole destroyed and lost forever [1], or might it be recovered from the Hawking radiation that is emitted as the black hole evaporates? Evidence from string theory suggests that the information, rather than being destroyed, can be encoded in the black hole’s internal degrees of freedom and eventually transferred to the outgoing radiation [2, 3]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, it was shown that the super-conformal field theory on the brane decouples from the bulk of the field theory in a low energy limit.
Abstract: We show that the large $N$ limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large $N$. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The 't Hooft limit of 4-d ${\cal N} =4$ super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes are dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions.

3,136 citations

Journal ArticleDOI
TL;DR: The Bekenstein-Hawking area-entropy relation for extremal black holes in string theory was derived in this paper by counting the degeneracy of BPS soliton bound states.
Abstract: The Bekenstein-Hawking area-entropy relation $S_{BH}=A/4$ is derived for a class of five-dimensional extremal black holes in string theory by counting the degeneracy of BPS soliton bound states.

2,410 citations