scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Block copolymer solution self-assembly: Recent advances, emerging trends, and applications

01 Sep 2021-Journal of Polymer Science (John Wiley & Sons, Ltd)-Vol. 59, Iss: 17, pp 1874-1898
About: This article is published in Journal of Polymer Science.The article was published on 2021-09-01 and is currently open access. It has received 49 citations till now.
Citations
More filters
10 Aug 2014
TL;DR: It is established how molecular control over polymer composition programs the building block symmetries and regulates particle positioning, offering a route to well-ordered mixed mesostructures of high complexity.
Abstract: The concept of hierarchical bottom-up structuring commonly encountered in natural materials provides inspiration for the design of complex artificial materials with advanced functionalities. Natural processes have achieved the orchestration of multicomponent systems across many length scales with very high precision, but man-made self-assemblies still face obstacles in realizing well-defined hierarchical structures. In particle-based self-assembly, the challenge is to program symmetries and periodicities of superstructures by providing monodisperse building blocks with suitable shape anisotropy or anisotropic interaction patterns (‘patches’). Irregularities in particle architecture are intolerable because they generate defects that amplify throughout the hierarchical levels. For patchy microscopic hard colloids, this challenge has been approached by using top-down methods (such as metal shading or microcontact printing), enabling molecule-like directionality during aggregation. However, both top-down procedures and particulate systems based on molecular assembly struggle to fabricate patchy particles controllably in the desired size regime (10–100 nm). Here we introduce the co-assembly of dynamic patchy nanoparticles—that is, soft patchy nanoparticles that are intrinsically self-assembled and monodisperse—as a modular approach for producing well-ordered binary and ternary supracolloidal hierarchical assemblies. We bridge up to three hierarchical levels by guiding triblock terpolymers (length scale ∼10 nm) to form soft patchy nanoparticles (20–50 nm) of different symmetries that, in combination, co-assemble into substructured, compartmentalized materials (>10 μm) with predictable and tunable nanoscale periodicities. We establish how molecular control over polymer composition programs the building block symmetries and regulates particle positioning, offering a route to well-ordered mixed mesostructures of high complexity.

59 citations

Journal ArticleDOI
TL;DR: In this article, the influence of the structure of π-conjugated-polymer-containing block copolymers (BCPs) and experimental conditions on the CDSA behaviors, especially seeded growth and self-seeding processes of living CDSA, has been discussed in detail, aiming to provide an in-depth overview of living CPNF-based self-assembly.

18 citations

Journal ArticleDOI
TL;DR: In this article , the authors examined three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1-2 h time scale.
Abstract: Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1-2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies.

6 citations

Journal ArticleDOI
Zhe Qiang1
TL;DR: In this article , the progress and opportunities of self-assembled polymer in the synthesis of mesoporous carbons (MCs) have aroused significant research interests over the past decades, and two most established approaches for converting nanostructured polymers to MCs, including templating-based and direct pyrolysis-based methods, are discussed.
Abstract: Polymer self-assembly provides a robust and cost-efficient nanomanufacturing platform for enabling a broad range of applications, such as microelectronics, drug delivery, and separation membranes. This review focuses on discussing the progress and opportunities of self-assembled polymer in the synthesis of mesoporous carbons (MCs), which have aroused significant research interests over the past decades. Specifically, we will discuss the two most established approaches for converting nanostructured polymers to MCs, including templating-based and direct pyrolysis-based methods. We will also review the fundamental ordering mechanisms and kinetics of these polymeric systems and discuss the recent development of engineering methods for providing on-demand control over the pore size and morphology of MCs. Additionally, this review article also includes a section focusing on the strategies to further functionalize these materials from self-assembled polymers to enhance their performance, such as chemical activation, heteroatom doping, introduction of nanoparticles into the carbon matrix, and enhancing graphitization degree of carbon walls. Finally, a brief perspective is provided about the emerging research opportunity in this exciting field.

6 citations

Journal ArticleDOI
TL;DR: The rapid increase in antibiotic resistant strains of bacteria has led to an urgent need to develop new methods of treating bacterial infections, and antibacterial polymeric nanoparticles are of interest for this purpose.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: The present tutorial review introduces the primary principles of BCP self-assembly in bulk and in solution by describing experiments, theories, accessible morphologies and morphological transitions, factors affecting the morphology, thermodynamics and kinetics, among others.
Abstract: Block copolymer (BCP) self-assembly has attracted considerable attention for many decades because it can yield ordered structures in a wide range of morphologies, including spheres, cylinders, bicontinuous structures, lamellae, vesicles, and many other complex or hierarchical assemblies. These aggregates provide potential or practical applications in many fields. The present tutorial review introduces the primary principles of BCP self-assembly in bulk and in solution, by describing experiments, theories, accessible morphologies and morphological transitions, factors affecting the morphology, thermodynamics and kinetics, among others. As one specific example at a more advanced level, BCP vesicles (polymersomes) and their potential applications are discussed in some detail.

2,631 citations

Journal ArticleDOI
24 Nov 1956-Nature

994 citations

Journal ArticleDOI
TL;DR: A unified theory is developed that explains the formation of bilayers and vesicles and accounts quantitatively for many of their physical properties: properties including vesicle size distributions and bilayer elasticity emerge from a unified theory that links thermodynamics, interaction free energy, and molecular geometry.

868 citations

Journal ArticleDOI
TL;DR: By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the activity of the loaded drugs at the targeted sites, even at the subcellular level.
Abstract: Polymeric micelles are demonstrating high potential as nanomedicines capable of controlling the distribution and function of loaded bioactive agents in the body, effectively overcoming biological barriers, and various formulations are engaged in intensive preclinical and clinical testing. This Review focuses on polymeric micelles assembled through multimolecular interactions between block copolymers and the loaded drugs, proteins, or nucleic acids as translationable nanomedicines. The aspects involved in the design of successful micellar carriers are described in detail on the basis of the type of polymer/payload interaction, as well as the interplay of micelles with the biological interface, emphasizing on the chemistry and engineering of the block copolymers. By shaping these features, polymeric micelles have been propitious for delivering a wide range of therapeutics through effective sensing of targets in the body and adjustment of their properties in response to particular stimuli, modulating the act...

782 citations

Journal ArticleDOI
TL;DR: A critical appraisal of the various advantages offered by polymerization-induced self-assembly, while also pointing out some of its current drawbacks is provided.
Abstract: Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted.

655 citations