scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Blockchains and Smart Contracts for the Internet of Things

10 May 2016-IEEE Access (IEEE)-Vol. 4, pp 2292-2303
TL;DR: The conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.
Abstract: Motivated by the recent explosion of interest around blockchains, we examine whether they make a good fit for the Internet of Things (IoT) sector. Blockchains allow us to have a distributed peer-to-peer network where non-trusting members can interact with each other without a trusted intermediary, in a verifiable manner. We review how this mechanism works and also look into smart contracts—scripts that reside on the blockchain that allow for the automation of multi-step processes. We then move into the IoT domain, and describe how a blockchain-IoT combination: 1) facilitates the sharing of services and resources leading to the creation of a marketplace of services between devices and 2) allows us to automate in a cryptographically verifiable manner several existing, time-consuming workflows. We also point out certain issues that should be considered before the deployment of a blockchain network in an IoT setting: from transactional privacy to the expected value of the digitized assets traded on the network. Wherever applicable, we identify solutions and workarounds. Our conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.
Citations
More filters
Proceedings ArticleDOI
15 Apr 2019
TL;DR: This paper proposes a scalable transactive smart homes infrastructure by leveraging a Directed Acyclic Graph (DAG) based DLT and following the separation of concerns (SOC) design principle, and concludes that the proposed DAG-based distributed ledger is an effective solution for building an IoT infrastructure for smart communities.
Abstract: In recent years, Distributed Ledger Technology (DLT) has been playing a more and more important role in building trust and security for Internet of Things (IoT). However, the unacceptable performance of the current mainstream DLT systems such as Bitcoin can hardly meet the efficiency and scalability requirements of IoT. In this paper, we propose a scalable transactive smart homes infrastructure by leveraging a Directed Acyclic Graph (DAG) based DLT and following the separation of concerns (SOC) design principle. Based on the proposed solution, an experiment with 40 Home Nodes is conducted to prove the concepts. From the results, we find that our solution provides a high transaction speed and scalability, as well as good performance on security and micropayment which are important in IoT settings. Then, we conduct an analysis and discuss how the new system breaks out the well-known Trilemma, which claims that it is hard for a DLT platform to simultaneously reach decentralization, scalability and security. Finally, we conclude that the proposed DAG-based distributed ledger is an effective solution for building an IoT infrastructure for smart communities.

30 citations


Cites background or result from "Blockchains and Smart Contracts for..."

  • ...The authors concluded that the combination of BC and IoT is powerful and can lead to significant changes across several industries, creating opportunities for new business models and novel, decentralized applications [13]....

    [...]

  • ...Similar to this survey, another work [13] took a deep look into how IoT and BC (especially smart contract) can be used together....

    [...]

Journal ArticleDOI
TL;DR: In this paper , a blockchain-based spectrum trading and sharing system that addresses security concerns and maintains user privacy is proposed, where mobile network operators can exchange spectrum without relying on a third party using a Distributed Blockchain Consortium System (DBCS).

29 citations

Journal ArticleDOI
03 Apr 2021
TL;DR: A comprehensive overview about the applications of AI in blockchain is provided, which audit, and sum up the rise of blockchain applications, and stages explicitly focusing on the AI research area, and recognizes and summarize open challenges in using blockchain and AI techniques.
Abstract: It is irrefutable that blockchain and artificial intelligence (AI) paradigms are spreading at an incredible rate. The two paradigms have distinctive level of innovative nature and multidim...

29 citations

Journal ArticleDOI
Wenwen Wang1, Jun Wang1, Jinpeng Tian1, Jiahuan Lu1, Rui Xiong1 
TL;DR: In this paper, the development history, basic concepts and key technologies of the digital twin, and summarizes current research methods and challenges in battery modeling, state estimation, remaining useful life prediction, battery safety and control.
Abstract: Lithium-ion batteries have always been a focus of research on new energy vehicles, however, their internal reactions are complex, and problems such as battery aging and safety have not been fully understood. In view of the research and preliminary application of the digital twin in complex systems such as aerospace, we will have the opportunity to use the digital twin to solve the bottleneck of current battery research. Firstly, this paper arranges the development history, basic concepts and key technologies of the digital twin, and summarizes current research methods and challenges in battery modeling, state estimation, remaining useful life prediction, battery safety and control. Furthermore, based on digital twin we describe the solutions for battery digital modeling, real-time state estimation, dynamic charging control, dynamic thermal management, and dynamic equalization control in the intelligent battery management system. We also give development opportunities for digital twin in the battery field. Finally we summarize the development trends and challenges of smart battery management.

29 citations

Journal ArticleDOI
TL;DR: Compared with the algorithm of the fabric platform, the dynamic-reputation practical Byzantine fault tolerance algorithm improves the transaction processing speed and is suitable for the blockchain application in the energy field.
Abstract: The energy blockchain is a distributed Internet protocol for energy transactions between nodes in power systems. The consensus algorithm is the core component of the energy blockchain and has an es...

29 citations


Cites background from "Blockchains and Smart Contracts for..."

  • ...It can be said that the technical characteristics of the blockchain itself have the inherent advantages of reconstructing the energy system.(15) At present, preliminary achievements have been made in the research and application of blockchain technology in the energy field....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The Albanian Generals Problem as mentioned in this paper is a generalization of Dijkstra's dining philosophers problem, where two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive.
Abstract: I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves. (For example, it has probably received more attention in the theory community than the readers/writers problem, which illustrates the same principles and has much more practical importance.) I believed that the problem introduced in [41] was very important and deserved the attention of computer scientists. The popularity of the dining philosophers problem taught me that the best way to attract attention to a problem is to present it in terms of a story. There is a problem in distributed computing that is sometimes called the Chinese Generals Problem, in which two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive. I stole the idea of the generals and posed the problem in terms of a group of generals, some of whom may be traitors, who have to reach a common decision. I wanted to assign the generals a nationality that would not offend any readers. At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem. Jack Goldberg was smart enough to realize that there were Albanians in the world outside Albania, and Albania might not always be a black hole, so he suggested that I find another name. The obviously more appropriate Byzantine generals then occurred to me. The main reason for writing this paper was to assign the new name to the problem. But a new paper needed new results as well. I came up with a simpler way to describe the general 3n+1-processor algorithm. (Shostak’s 4-processor algorithm was subtle but easy to understand; Pease’s generalization was a remarkable tour de force.) We also added a generalization to networks that were not completely connected. (I don’t remember whose work that was.) I also added some discussion of practical implementation details.

5,208 citations

Book ChapterDOI
TL;DR: In this article, a group of generals of the Byzantine army camped with their troops around an enemy city are shown to agree upon a common battle plan using only oral messages, if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals.
Abstract: Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.

4,901 citations

Book ChapterDOI
John R. Douceur1
07 Mar 2002
TL;DR: It is shown that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.
Abstract: Large-scale peer-to-peer systems face security threats from faulty or hostile remote computing elements. To resist these threats, many such systems employ redundancy. However, if a single faulty entity can present multiple identities, it can control a substantial fraction of the system, thereby undermining this redundancy. One approach to preventing these "Sybil attacks" is to have a trusted agency certify identities. This paper shows that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.

4,816 citations


"Blockchains and Smart Contracts for..." refers background in this paper

  • ...Because of the Sybil attack [15], consensus in public networks is costly...

    [...]

  • ...anyone can join though, this would be catastrophic because of the Sybil attack [15]: a single entity could join with multiple identities, get multiple votes, and thus influence the network to favor this entity’s interests....

    [...]

Proceedings ArticleDOI
22 Feb 1999
TL;DR: A new replication algorithm that is able to tolerate Byzantine faults that works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude.
Abstract: This paper describes a new replication algorithm that is able to tolerate Byzantine faults. We believe that Byzantinefault-tolerant algorithms will be increasingly important in the future because malicious attacks and software errors are increasingly common and can cause faulty nodes to exhibit arbitrary behavior. Whereas previous algorithms assumed a synchronous system or were too slow to be used in practice, the algorithm described in this paper is practical: it works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude. We implemented a Byzantine-fault-tolerant NFS service using our algorithm and measured its performance. The results show that our service is only 3% slower than a standard unreplicated NFS.

3,562 citations


"Blockchains and Smart Contracts for..." refers background or methods in this paper

  • ...5If more than 3f + 1 nodes are used, then the quorum thresholds listed in [26] may lead to forks....

    [...]

  • ...Tendermint vs PBFT—Tendermint....

    [...]

  • ...Sieve [38], a mechanism used in the HyperLedger Fabric project, augments the PBFT algorithm [26] by adding speculative execution and verification phases, inspired by the execute-verify architecture presented in [39]....

    [...]

  • ...Tendermint [32] provides BFT tolerance and is similar to the PBFT algorithm; however it provides a tighter guarantee with regards to the results returned to the client when more than one third of the nodes are faulty, and allows for a dynamically changing set of set of validators, and leaders that can be rotated in a round-robin manner, among other optimizations [33]....

    [...]

  • ...PBFT works on the assumption that less than one third of the nodes are faulty (f ), which is why say that it requires at least5 3f + 1 nodes....

    [...]

Proceedings Article
19 Jun 2014
TL;DR: Raft is a consensus algorithm for managing a replicated log that separates the key elements of consensus, such as leader election, log replication, and safety, and it enforces a stronger degree of coherency to reduce the number of states that must be considered.
Abstract: Raft is a consensus algorithm for managing a replicated log. It produces a result equivalent to (multi-)Paxos, and it is as efficient as Paxos, but its structure is different from Paxos; this makes Raft more understandable than Paxos and also provides a better foundation for building practical systems. In order to enhance understandability, Raft separates the key elements of consensus, such as leader election, log replication, and safety, and it enforces a stronger degree of coherency to reduce the number of states that must be considered. Results from a user study demonstrate that Raft is easier for students to learn than Paxos. Raft also includes a new mechanism for changing the cluster membership, which uses overlapping majorities to guarantee safety.

1,811 citations


"Blockchains and Smart Contracts for..." refers methods in this paper

  • ...popular Raft algorithm [30], is used as a consensus mechanism in Juno [31]....

    [...]