scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Blockchains and Smart Contracts for the Internet of Things

10 May 2016-IEEE Access (IEEE)-Vol. 4, pp 2292-2303
TL;DR: The conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.
Abstract: Motivated by the recent explosion of interest around blockchains, we examine whether they make a good fit for the Internet of Things (IoT) sector. Blockchains allow us to have a distributed peer-to-peer network where non-trusting members can interact with each other without a trusted intermediary, in a verifiable manner. We review how this mechanism works and also look into smart contracts—scripts that reside on the blockchain that allow for the automation of multi-step processes. We then move into the IoT domain, and describe how a blockchain-IoT combination: 1) facilitates the sharing of services and resources leading to the creation of a marketplace of services between devices and 2) allows us to automate in a cryptographically verifiable manner several existing, time-consuming workflows. We also point out certain issues that should be considered before the deployment of a blockchain network in an IoT setting: from transactional privacy to the expected value of the digitized assets traded on the network. Wherever applicable, we identify solutions and workarounds. Our conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.
Citations
More filters
Journal ArticleDOI
03 Apr 2020-Sensors
TL;DR: A novel OTP (one-time password)-authentication schema for MQTT is proposed, which uses the Ethereum blockchain to implement a second-factor out-of-band channel and enables the authentication of both local and remote devices preserving user privacy and guaranteeing trust and accountability via Ethereum smart contracts.
Abstract: The Internet of Things is constantly capturing interest from modern applications, changing our everyday life and empowering industrial applications. Interaction and the collaboration among smart devices offer new challenges to security since they conflict with economic and energy consumption requirement constraints. On the other hand, the lack of security measures could negatively impact the concrete adoption of this paradigm. This paper focuses on the Message Queuing Telemetry Transport (MQTT) protocol, widely adopted in the Internet of Things. This protocol does not implement natively secure authentication mechanisms, which are demanded to developers. Hence, this paper proposes a novel OTP (one-time password)-authentication schema for MQTT, which uses the Ethereum blockchain to implement a second-factor out-of-band channel. The proposal enables the authentication of both local and remote devices preserving user privacy and guaranteeing trust and accountability via Ethereum smart contracts.

18 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore how blockchain and smart contracts can build trust and act as catalysts for sustainable social businesses by supporting the coexistence of social and economic logics of social ventures.

18 citations


Cites background from "Blockchains and Smart Contracts for..."

  • ...Research by Dolgui et al. (2019) proposes that smart contracts can remove reliance on intermediaries within organisational transactions (Christidis and Devetsikiotis, 2016)....

    [...]

  • ...These include financial services (Yang et al., 2019), health (Tapscott and Tapscott, 2017), governance (Pereira et al., 2019), the Internet of Things (Christidis and Devetsikiotis, 2016) and supply chains (Bodkhe et al., 2020)....

    [...]

Proceedings ArticleDOI
15 Apr 2019
TL;DR: This paper proposes a system architecture composed of a sensor cloud and an UAV (unmanned aerial vehicle) cloud designed for the surveillance of a dam site based on the Blockchain technology which provides authentication, storage, data integrity, traceability of the delivery task of the UAV cloud, and payment of the entities that are responsible for the sensing and delivery tasks.
Abstract: The use of Cloud and Internet of Things (IoT) in monitoring the dam site will offer many benefits. In fact, it is very requisite to periodically monitor the quality and level of water in the reservoir and the weather conditions to predict the input flow into the reservoir. Moreover, it is crucial to monitor the dam structure to acquire health and safety condition of the dam infrastructure in real time and prevent the occurrence of events. In this paper, we propose a system architecture composed of a sensor cloud and an UAV (unmanned aerial vehicle) cloud designed for the surveillance of a dam site. The sensor cloud provides various sensing data and the UAV cloud collects these data and delivers them to the dam monitoring center (DMC). Our system is based on the Blockchain (BC) technology which provides authentication, storage, data integrity, traceability of the delivery task of the UAV cloud, and payment of the entities that are responsible for the sensing and delivery tasks. A simulation is conducted to evaluate the performance of the solution.

18 citations

Book ChapterDOI
24 May 2018
TL;DR: It is explained that together Autonomous vehicles and Blockchain technology could provide the end user with cleaner, more economical and efficient transportation and make the economic transaction easier.
Abstract: In this paper, the possibility of using the autonomous vehicles with the contribution of Blockchain technology as part of a service is examined. As a first step a short Literature review of Autonomous Vehicles as well as Blockchain technology is provided. Blockchain is another newly established technology and its main purpose is to facilitate secure online transactions. Furthermore, through this paper it is explained that together Autonomous vehicles and Blockchain technology could provide the end user with cleaner, more economical and efficient transportation. In addition, a publicly owned system is described, where the two technologies combine, and the autonomous vehicle will provide the user the most convenient route based on real-time traffic information, while Blockchain will make the economic transaction easier since it could allow peer-to-peer carsharing and eliminate the need for banks. Moreover, in order to fully understand this system, the rising concerns regarding these technologies are mentioned. This paper aims to examine such a possible service using autonomous vehicles and Blockchain technology, since they essential could become the future of transportation.

18 citations

Proceedings ArticleDOI
01 Feb 2019
TL;DR: A Blockchain based decentralized architecture for the storage of IoT data produced from smart home/cities is advanced that includes a secure communication protocol using a sign-encryption technique between power constrained IoT devices and a Gateway.
Abstract: Blockchains have been widely used in Internet of Things(IoT) applications including smart cities, smart home and smart governance to provide high levels of security and privacy. In this article, we advance a Blockchain based decentralized architecture for the storage of IoT data produced from smart home/cities. The architecture includes a secure communication protocol using a sign-encryption technique between power constrained IoT devices and a Gateway. The sign encryption also preserves privacy. We propose that a Software Agent executing on the Gateway selects a Miner node using performance parameters of Miners. Simulations demonstrate that the recommended Miner selection outperforms Proof of Works selection used in Bitcoin and Random Miner Selection.

18 citations


Cites background from "Blockchains and Smart Contracts for..."

  • ...The proposed smart contract [11] which is a set of rules inserted into Blockchain nodes might not be appropriate to be executed in lossy and tiny IoT devices....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The Albanian Generals Problem as mentioned in this paper is a generalization of Dijkstra's dining philosophers problem, where two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive.
Abstract: I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves. (For example, it has probably received more attention in the theory community than the readers/writers problem, which illustrates the same principles and has much more practical importance.) I believed that the problem introduced in [41] was very important and deserved the attention of computer scientists. The popularity of the dining philosophers problem taught me that the best way to attract attention to a problem is to present it in terms of a story. There is a problem in distributed computing that is sometimes called the Chinese Generals Problem, in which two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive. I stole the idea of the generals and posed the problem in terms of a group of generals, some of whom may be traitors, who have to reach a common decision. I wanted to assign the generals a nationality that would not offend any readers. At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem. Jack Goldberg was smart enough to realize that there were Albanians in the world outside Albania, and Albania might not always be a black hole, so he suggested that I find another name. The obviously more appropriate Byzantine generals then occurred to me. The main reason for writing this paper was to assign the new name to the problem. But a new paper needed new results as well. I came up with a simpler way to describe the general 3n+1-processor algorithm. (Shostak’s 4-processor algorithm was subtle but easy to understand; Pease’s generalization was a remarkable tour de force.) We also added a generalization to networks that were not completely connected. (I don’t remember whose work that was.) I also added some discussion of practical implementation details.

5,208 citations

Book ChapterDOI
TL;DR: In this article, a group of generals of the Byzantine army camped with their troops around an enemy city are shown to agree upon a common battle plan using only oral messages, if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals.
Abstract: Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.

4,901 citations

Book ChapterDOI
John R. Douceur1
07 Mar 2002
TL;DR: It is shown that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.
Abstract: Large-scale peer-to-peer systems face security threats from faulty or hostile remote computing elements. To resist these threats, many such systems employ redundancy. However, if a single faulty entity can present multiple identities, it can control a substantial fraction of the system, thereby undermining this redundancy. One approach to preventing these "Sybil attacks" is to have a trusted agency certify identities. This paper shows that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.

4,816 citations


"Blockchains and Smart Contracts for..." refers background in this paper

  • ...Because of the Sybil attack [15], consensus in public networks is costly...

    [...]

  • ...anyone can join though, this would be catastrophic because of the Sybil attack [15]: a single entity could join with multiple identities, get multiple votes, and thus influence the network to favor this entity’s interests....

    [...]

Proceedings ArticleDOI
22 Feb 1999
TL;DR: A new replication algorithm that is able to tolerate Byzantine faults that works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude.
Abstract: This paper describes a new replication algorithm that is able to tolerate Byzantine faults. We believe that Byzantinefault-tolerant algorithms will be increasingly important in the future because malicious attacks and software errors are increasingly common and can cause faulty nodes to exhibit arbitrary behavior. Whereas previous algorithms assumed a synchronous system or were too slow to be used in practice, the algorithm described in this paper is practical: it works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude. We implemented a Byzantine-fault-tolerant NFS service using our algorithm and measured its performance. The results show that our service is only 3% slower than a standard unreplicated NFS.

3,562 citations


"Blockchains and Smart Contracts for..." refers background or methods in this paper

  • ...5If more than 3f + 1 nodes are used, then the quorum thresholds listed in [26] may lead to forks....

    [...]

  • ...Tendermint vs PBFT—Tendermint....

    [...]

  • ...Sieve [38], a mechanism used in the HyperLedger Fabric project, augments the PBFT algorithm [26] by adding speculative execution and verification phases, inspired by the execute-verify architecture presented in [39]....

    [...]

  • ...Tendermint [32] provides BFT tolerance and is similar to the PBFT algorithm; however it provides a tighter guarantee with regards to the results returned to the client when more than one third of the nodes are faulty, and allows for a dynamically changing set of set of validators, and leaders that can be rotated in a round-robin manner, among other optimizations [33]....

    [...]

  • ...PBFT works on the assumption that less than one third of the nodes are faulty (f ), which is why say that it requires at least5 3f + 1 nodes....

    [...]

Proceedings Article
19 Jun 2014
TL;DR: Raft is a consensus algorithm for managing a replicated log that separates the key elements of consensus, such as leader election, log replication, and safety, and it enforces a stronger degree of coherency to reduce the number of states that must be considered.
Abstract: Raft is a consensus algorithm for managing a replicated log. It produces a result equivalent to (multi-)Paxos, and it is as efficient as Paxos, but its structure is different from Paxos; this makes Raft more understandable than Paxos and also provides a better foundation for building practical systems. In order to enhance understandability, Raft separates the key elements of consensus, such as leader election, log replication, and safety, and it enforces a stronger degree of coherency to reduce the number of states that must be considered. Results from a user study demonstrate that Raft is easier for students to learn than Paxos. Raft also includes a new mechanism for changing the cluster membership, which uses overlapping majorities to guarantee safety.

1,811 citations


"Blockchains and Smart Contracts for..." refers methods in this paper

  • ...popular Raft algorithm [30], is used as a consensus mechanism in Juno [31]....

    [...]