scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Blockchains and Smart Contracts for the Internet of Things

10 May 2016-IEEE Access (IEEE)-Vol. 4, pp 2292-2303
TL;DR: The conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.
Abstract: Motivated by the recent explosion of interest around blockchains, we examine whether they make a good fit for the Internet of Things (IoT) sector. Blockchains allow us to have a distributed peer-to-peer network where non-trusting members can interact with each other without a trusted intermediary, in a verifiable manner. We review how this mechanism works and also look into smart contracts—scripts that reside on the blockchain that allow for the automation of multi-step processes. We then move into the IoT domain, and describe how a blockchain-IoT combination: 1) facilitates the sharing of services and resources leading to the creation of a marketplace of services between devices and 2) allows us to automate in a cryptographically verifiable manner several existing, time-consuming workflows. We also point out certain issues that should be considered before the deployment of a blockchain network in an IoT setting: from transactional privacy to the expected value of the digitized assets traded on the network. Wherever applicable, we identify solutions and workarounds. Our conclusion is that the blockchain-IoT combination is powerful and can cause significant transformations across several industries, paving the way for new business models and novel, distributed applications.
Citations
More filters
Journal ArticleDOI
TL;DR: The link blockchain-sustainability was explored, showing that this technology could be the trigger for limiting food waste, reducing exhaust gas emissions, favouring correct urban development, and, in general, improving quality of life.
Abstract: This paper presents a literature review about the application of blockchain-based systems in transportation. The main aim was to identify, through the implementation of a multi-step methodology: current research-trends, main gaps in the literature, and possible future challenges. First, a bibliometric analysis was carried out to obtain a broad overview of the topic of interest. Subsequently, the most influential contributions were analysed in depth, with reference to the following two areas: supply chain and logistics; road traffic management and smart cities. The most important result is that the blockchain technology is still in an early stage, but appears extremely promising, given its possible applications within multiple fields, such as food track and trace, regulatory compliance, smart vehicles’ security, and supply-demand matching. Much effort is still necessary for reaching the maturation stage because several models have been theorized in recent years, but very few have been implemented within real contexts. Moreover, the link blockchain-sustainability was explored, showing that this technology could be the trigger for limiting food waste, reducing exhaust gas emissions, favouring correct urban development, and, in general, improving quality of life.

97 citations


Cites background from "Blockchains and Smart Contracts for..."

  • ...Smart contracts [70] are contracts in the form of computer code that will execute, for example, a currency transfer when a certain condition is met....

    [...]

Journal ArticleDOI
TL;DR: This paper argues that blockchain’s characteristics are especially important for enforcing sustainability standards in developing countries, and develops seven propositions, which describe how blockchain can help address a number of challenges various stakeholders face in promoting sustainable supply chains in developing nations.

97 citations

Journal ArticleDOI
TL;DR: This paper proposes an iterative double-sided auction scheme for computing resource trading, where the broker solves an allocation problem to determine how much computing resource is traded and designs a specific price rule to induce the buyers and sellers of the computing resource to submit bids in a truthful way.
Abstract: Optimal computing resource allocation for edge-cloud-assisted Internet of things (IoT) in blockchain network is attracting increasing attention. Auction is a classical algorithm which guarantees that the computing resources are allocated to the buyers of the computing resource. However, the traditional auction algorithm only guarantees the revenue gains for the sellers of the computing resource. How to guarantee the seller and the buyer of the computing resource when both are willing to trade and moreover, bid truthfully, is still an open problem in computing resource trading for edge-cloud-assisted IoT. In this paper, we introduce a broker with sparse information to manage and adjust the trading market. We then propose an iterative double-sided auction scheme for computing resource trading, where the broker solves an allocation problem to determine how much computing resource is traded and designs a specific price rule to induce the buyers and sellers of the computing resource to submit bids in a truthful way. Thus, hidden information can be extracted gradually to obtain optimal computing resource allocation and trading prices. Hence, the proposed algorithm can achieve the maximum social welfare meanwhile protecting the privacies of the buyers and the sellers. Our theoretical analysis and simulations demonstrate that the proposed algorithm is efficient, i.e., it achieves the maximum social welfare. In addition, the proposed algorithm can provide effective trading strategies for the buyers and sellers of the computing resource, leading to the proposed algorithm satisfying incentive compatibility, individual rationality, and budget balance.

97 citations

Proceedings ArticleDOI
01 Aug 2018
TL;DR: This paper proposes a system for identity and access management using blockchain technology to support authentication and authorization of entities in a digital system and provides a proof of concept based on a use case concerning Electronic Health Records from the healthcare domain.
Abstract: Blockchain has proved itself to be tamper resistant and secure. It is increasingly getting attention from companies changing from centralized to decentralized systems. This paper proposes a system for identity and access management using blockchain technology to support authentication and authorization of entities in a digital system. A prototype demonstrates the application of blockchain in identity and access management using the Hyperledger Fabric framework. It provides a proof of concept based on a use case concerning Electronic Health Records from the healthcare domain where an immutable and auditable history is desired for data concerning patients. Basic authentication and authorization operations are able to execute in 2-3 seconds with an initial size of blockchain of about 3.8 MB covering physicians in Denmark.

97 citations


Cites background from "Blockchains and Smart Contracts for..."

  • ...Smart contracts can be thought of as digitized variants of agreements that enforces certain rules for transactions by a network of peers based on defined policies [18], [19]....

    [...]

Journal ArticleDOI
12 Nov 2018-Sensors
TL;DR: A mixed incentive mechanism which combined privacy protection and virtual credit called a blockchain-based location privacy protection incentive mechanism in crowd sensing networks is proposed.
Abstract: Crowd sensing is a perception mode that recruits mobile device users to complete tasks such as data collection and cloud computing. For the cloud computing platform, crowd sensing can not only enable users to collaborate to complete large-scale awareness tasks but also provide users for types, social attributes, and other information for the cloud platform. In order to improve the effectiveness of crowd sensing, many incentive mechanisms have been proposed. Common incentives are monetary reward, entertainment & gamification, social relation, and virtual credit. However, there are rare incentives based on privacy protection basically. In this paper, we proposed a mixed incentive mechanism which combined privacy protection and virtual credit called a blockchain-based location privacy protection incentive mechanism in crowd sensing networks. Its network structure can be divided into three parts which are intelligence crowd sensing networks, confusion mechanism, and blockchain. We conducted the experiments in the campus environment and the results shows that the incentive mechanism proposed in this paper has the efficacious effect in stimulating user participation.

97 citations


Cites background from "Blockchains and Smart Contracts for..."

  • ...As shown in Figure 1, the network structure of blockchains [18] can be divided into three parts: intelligence crowd sensing networks, confusion mechanisms, and blockchain....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The Albanian Generals Problem as mentioned in this paper is a generalization of Dijkstra's dining philosophers problem, where two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive.
Abstract: I have long felt that, because it was posed as a cute problem about philosophers seated around a table, Dijkstra’s dining philosopher’s problem received much more attention than it deserves. (For example, it has probably received more attention in the theory community than the readers/writers problem, which illustrates the same principles and has much more practical importance.) I believed that the problem introduced in [41] was very important and deserved the attention of computer scientists. The popularity of the dining philosophers problem taught me that the best way to attract attention to a problem is to present it in terms of a story. There is a problem in distributed computing that is sometimes called the Chinese Generals Problem, in which two generals have to come to a common agreement on whether to attack or retreat, but can communicate only by sending messengers who might never arrive. I stole the idea of the generals and posed the problem in terms of a group of generals, some of whom may be traitors, who have to reach a common decision. I wanted to assign the generals a nationality that would not offend any readers. At the time, Albania was a completely closed society, and I felt it unlikely that there would be any Albanians around to object, so the original title of this paper was The Albanian Generals Problem. Jack Goldberg was smart enough to realize that there were Albanians in the world outside Albania, and Albania might not always be a black hole, so he suggested that I find another name. The obviously more appropriate Byzantine generals then occurred to me. The main reason for writing this paper was to assign the new name to the problem. But a new paper needed new results as well. I came up with a simpler way to describe the general 3n+1-processor algorithm. (Shostak’s 4-processor algorithm was subtle but easy to understand; Pease’s generalization was a remarkable tour de force.) We also added a generalization to networks that were not completely connected. (I don’t remember whose work that was.) I also added some discussion of practical implementation details.

5,208 citations

Book ChapterDOI
TL;DR: In this article, a group of generals of the Byzantine army camped with their troops around an enemy city are shown to agree upon a common battle plan using only oral messages, if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals.
Abstract: Reliable computer systems must handle malfunctioning components that give conflicting information to different parts of the system. This situation can be expressed abstractly in terms of a group of generals of the Byzantine army camped with their troops around an enemy city. Communicating only by messenger, the generals must agree upon a common battle plan. However, one or more of them may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound two loyal generals. With unforgeable written messages, the problem is solvable for any number of generals and possible traitors. Applications of the solutions to reliable computer systems are then discussed.

4,901 citations

Book ChapterDOI
John R. Douceur1
07 Mar 2002
TL;DR: It is shown that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.
Abstract: Large-scale peer-to-peer systems face security threats from faulty or hostile remote computing elements. To resist these threats, many such systems employ redundancy. However, if a single faulty entity can present multiple identities, it can control a substantial fraction of the system, thereby undermining this redundancy. One approach to preventing these "Sybil attacks" is to have a trusted agency certify identities. This paper shows that, without a logically centralized authority, Sybil attacks are always possible except under extreme and unrealistic assumptions of resource parity and coordination among entities.

4,816 citations


"Blockchains and Smart Contracts for..." refers background in this paper

  • ...Because of the Sybil attack [15], consensus in public networks is costly...

    [...]

  • ...anyone can join though, this would be catastrophic because of the Sybil attack [15]: a single entity could join with multiple identities, get multiple votes, and thus influence the network to favor this entity’s interests....

    [...]

Proceedings ArticleDOI
22 Feb 1999
TL;DR: A new replication algorithm that is able to tolerate Byzantine faults that works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude.
Abstract: This paper describes a new replication algorithm that is able to tolerate Byzantine faults. We believe that Byzantinefault-tolerant algorithms will be increasingly important in the future because malicious attacks and software errors are increasingly common and can cause faulty nodes to exhibit arbitrary behavior. Whereas previous algorithms assumed a synchronous system or were too slow to be used in practice, the algorithm described in this paper is practical: it works in asynchronous environments like the Internet and incorporates several important optimizations that improve the response time of previous algorithms by more than an order of magnitude. We implemented a Byzantine-fault-tolerant NFS service using our algorithm and measured its performance. The results show that our service is only 3% slower than a standard unreplicated NFS.

3,562 citations


"Blockchains and Smart Contracts for..." refers background or methods in this paper

  • ...5If more than 3f + 1 nodes are used, then the quorum thresholds listed in [26] may lead to forks....

    [...]

  • ...Tendermint vs PBFT—Tendermint....

    [...]

  • ...Sieve [38], a mechanism used in the HyperLedger Fabric project, augments the PBFT algorithm [26] by adding speculative execution and verification phases, inspired by the execute-verify architecture presented in [39]....

    [...]

  • ...Tendermint [32] provides BFT tolerance and is similar to the PBFT algorithm; however it provides a tighter guarantee with regards to the results returned to the client when more than one third of the nodes are faulty, and allows for a dynamically changing set of set of validators, and leaders that can be rotated in a round-robin manner, among other optimizations [33]....

    [...]

  • ...PBFT works on the assumption that less than one third of the nodes are faulty (f ), which is why say that it requires at least5 3f + 1 nodes....

    [...]

Proceedings Article
19 Jun 2014
TL;DR: Raft is a consensus algorithm for managing a replicated log that separates the key elements of consensus, such as leader election, log replication, and safety, and it enforces a stronger degree of coherency to reduce the number of states that must be considered.
Abstract: Raft is a consensus algorithm for managing a replicated log. It produces a result equivalent to (multi-)Paxos, and it is as efficient as Paxos, but its structure is different from Paxos; this makes Raft more understandable than Paxos and also provides a better foundation for building practical systems. In order to enhance understandability, Raft separates the key elements of consensus, such as leader election, log replication, and safety, and it enforces a stronger degree of coherency to reduce the number of states that must be considered. Results from a user study demonstrate that Raft is easier for students to learn than Paxos. Raft also includes a new mechanism for changing the cluster membership, which uses overlapping majorities to guarantee safety.

1,811 citations


"Blockchains and Smart Contracts for..." refers methods in this paper

  • ...popular Raft algorithm [30], is used as a consensus mechanism in Juno [31]....

    [...]