scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries

10 Aug 2021-Journal of Materials Chemistry (The Royal Society of Chemistry)-Vol. 9, Iss: 31, pp 16814-16823
TL;DR: In this paper, a fast Zn-ion conductor, Znintercalated montmorillonite (Zn-Mont), is designed as an artificial solid/electrolyte interphase (SEI) film to tune the transfer and deposition behavior of Zn2+ ions on the surface of anodes.
Abstract: Metallic zinc is widely considered as the most promising anode candidate for next-generation rechargeable aqueous batteries owing to its high volumetric capacity and intrinsic safety. However, the inferior reversibility caused by uncontrolled dendrite growth and parasitic side reactions severely impedes the commercial application of rechargeable Zn-based batteries. Herein, a fast Zn-ion conductor, Zn-intercalated montmorillonite (Zn-Mont), is designed as an artificial solid/electrolyte interphase (SEI) film to tune the transfer and deposition behavior of Zn2+ ions on the surface of Zn anodes. Benefiting from the low Zn-ion migration energy barrier and Zn ion-selective pathway, the Zn-Mont coating could guarantee a homogeneous Zn-ion flux, and fast Zn2+ transfer kinetics, and avoid the ion/electron accumulation at the interface of the anode, thereby suppressing the growth of Zn dendrites. In addition, the Zn-Mont layer can prevent direct contact of the Zn metal with bulk electrolyte, alleviating the water/O2-induced side reactions. Consequently, high reversibility (coulombic efficiency > 99.6%), long-time stability (over 1000 cycles), and ultralow polarization (overpotential ≈ 28 mV) are achieved. When coupled with the MnO2 cathode, Zn@Zn-Mont||MnO2 full cells deliver outstanding cycling stability with 85.4% capacity retention (calculated based on the specific capacity of the 5th cycle) after 1000 cycles at 2C.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , a highly-confined and hydrogen bond-strengthened tannic acid (TA) modified sodium alginate (SA) composite hydrogel electrolyte (TA-SA) was proposed.

128 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends is proposed to deeply comprehend the essence and inner connection of degradation mechanism and performance.
Abstract: The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driving the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corrosion, severely reduce the performance of ZIBs. To commercialize ZIBs, researchers must overcome formidable challenges. Research about mild aqueous ZIBs is still developing. Various technical and scientific obstacles to designing Zn anodes with high stripping efficiency and long cycling life have not been resolved. Moreover, the performance of Zn anodes is a complex scientific issue determined by various parameters, most of which are often ignored, failing to achieve the maximum performance of the cell. This review proposes a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends to deeply comprehend the essence and inner connection of degradation mechanism and performance. First, the formation mechanism of dendrite growth, hydrogen evolution, corrosion, and their influence on the anode are analyzed. Furthermore, various strategies for constructing stable Zn anodes are summarized and discussed in detail from multiple perspectives. These strategies are mainly divided into interface modification, structural anode, alloying anode, intercalation anode, liquid electrolyte, non-liquid electrolyte, separator design, and other strategies. Finally, research directions and prospects are put forward for Zn anodes. This contribution highlights the latest developments and provides new insights into the advanced Zn anode for future research.

114 citations

Journal ArticleDOI
TL;DR: In this paper , a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends is proposed to deeply comprehend the essence and inner connection of degradation mechanism and performance.
Abstract: The rapid advance of mild aqueous zinc-ion batteries (ZIBs) is driving the development of the energy storage system market. But the thorny issues of Zn anodes, mainly including dendrite growth, hydrogen evolution, and corrosion, severely reduce the performance of ZIBs. To commercialize ZIBs, researchers must overcome formidable challenges. Research about mild aqueous ZIBs is still developing. Various technical and scientific obstacles to designing Zn anodes with high stripping efficiency and long cycling life have not been resolved. Moreover, the performance of Zn anodes is a complex scientific issue determined by various parameters, most of which are often ignored, failing to achieve the maximum performance of the cell. This review proposes a comprehensive overview of existing Zn anode issues and the corresponding strategies, frontiers, and development trends to deeply comprehend the essence and inner connection of degradation mechanism and performance. First, the formation mechanism of dendrite growth, hydrogen evolution, corrosion, and their influence on the anode are analyzed. Furthermore, various strategies for constructing stable Zn anodes are summarized and discussed in detail from multiple perspectives. These strategies are mainly divided into interface modification, structural anode, alloying anode, intercalation anode, liquid electrolyte, non-liquid electrolyte, separator design, and other strategies. Finally, research directions and prospects are put forward for Zn anodes. This contribution highlights the latest developments and provides new insights into the advanced Zn anode for future research.

99 citations

Journal ArticleDOI
TL;DR: A uniform and robust metallic Sb protective layer is designed based on the theoretic calculation and decorated on Zn plate via in situ replacement reaction to suppress both hydrogen evolution reaction and dendrite growth, and Sb-modified Zn anodes exhibit an ultralow voltage hysteresis of 34 mV and achieve excellent cycling stability over 1000 h with hydrogen- and dendedrite-free behaviors.
Abstract: Rechargeable aqueous Zn‐ion batteries (ZIBs) are regarded as one of the most promising devices for the next‐generation energy storage system. However, the uncontrolled dendrite growth on Zn metal anodes and the side hydrogen evolution reaction, which has not yet been well considered, hinder the practical application of these batteries. Herein, a uniform and robust metallic Sb protective layer is designed based on the theoretic calculation and decorated on Zn plate via in situ replacement reaction. Compared with the bare Zn plate, the as‐prepared Zn@Sb electrode provides abundant zincophilic sites for Zn nucleation, and homogenizes the electric field around the Zn anode surface, both of which promote the uniform Zn deposition to achieve a dendrite‐free morphology. Moreover, the Gibbs free energy (∆GH) calculation and in situ characterization demonstrate that hydrogen evolution reaction can be effectively suppressed by the Sb layer. Consequently, Sb‐modified Zn anodes exhibit an ultralow voltage hysteresis of 34 mV and achieve excellent cycling stability over 1000 h with hydrogen‐ and dendrite‐free behaviors. This work provides a facile and effective strategy to suppress both hydrogen evolution reaction and dendrite growth.

75 citations

Journal ArticleDOI
27 May 2022-ACS Nano
TL;DR: In this paper , a hydrophobic carbonate cosolvent was introduced into a dilute aqueous electrolyte to address the reversible issues facing Zn anodes than that with hydrophilic ones, and the formulated hybrid 2 m Zn(OTf)2 + 7 m DEC electrolyte endows the Zn electrode with an ability to achieve high cycling stability.
Abstract: Rechargeable aqueous zinc (Zn) batteries are promising for large-energy storage because of their low cost, high safety, and environmental compatibility, but their implementation is hindered by the severe irreversibility of Zn metal anodes as exemplified by water-induced side reactions (H2 evolution and Zn corrosion) and dendrite growth. Here, we find that the introduction of a hydrophobic carbonate cosolvent into a dilute aqueous electrolyte exhibits a much stronger ability to address the reversible issues facing Zn anodes than that with hydrophilic ones. Among the typical carbonates (ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate (DEC)), DEC as the most hydrophobic additive enables the strongest breaking of water's H-bond network and replaces the solvating H2O in a Zn2+-solvation sheath, which significantly reduces the water activity and its decomposition. Additionally, DEC molecules preferentially adsorb onto the Zn surface to create an H2O-poor electrical double layer and render a dendrite-free Zn2+-plating behavior. The formulated hybrid 2 m Zn(OTf)2 + 7 m DEC electrolyte endows the Zn electrode with an ability to achieve high cycling stability (over 3500 h at 5 mA cm-2 with 2.5 mA h cm-2) and supports the stable operation of Zn||V2O5·nH2O full battery. This efficient strategy with hydrophobic cosolvent suggests a promising direction for designing aqueous battery chemistries.

67 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of recent advances in rechargeable aqueous zinc-ion batteries (ZIBs) is presented, highlighting the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms.
Abstract: Although current high-energy-density lithium-ion batteries (LIBs) have taken over the commercial rechargeable battery market, increasing concerns about limited lithium resources, high cost, and insecurity of organic electrolyte scale-up limit their further development. Rechargeable aqueous zinc-ion batteries (ZIBs), an alternative battery chemistry, have paved the way not only for realizing environmentally benign and safe energy storage devices but also for reducing the manufacturing costs of next-generation batteries. This Review underscores recent advances in aqueous ZIBs; these include the design of a highly reversible Zn anode, optimization of the electrolyte, and a wide range of cathode materials and their energy storage mechanisms. We also present recent advanced techniques that aim at overcoming the current issues in aqueous ZIB systems. This Review on the future perspectives and research directions will provide a guide for future aqueous ZIB study.

1,370 citations

Journal ArticleDOI
TL;DR: A remarkable electrode performance results from the facile charge transfer and Zn insertion in the structurally robust spinel featuring small particle size and abundant cation vacancies, as evidenced by combined electrochemical measurements, XRD, Raman, synchrotron X-ray absorption spectroscopy, FTIR, and NMR analysis.
Abstract: Rechargeable aqueous Zn-ion batteries are attractive cheap, safe and green energy storage technologies but are bottlenecked by limitation in high-capacity cathode and compatible electrolyte to achieve satisfactory cyclability. Here we report the application of nonstoichiometric ZnMn2O4/carbon composite as a new Zn-insertion cathode material in aqueous Zn(CF3SO3)2 electrolyte. In 3 M Zn(CF3SO3)2 solution that enables ∼100% Zn plating/stripping efficiency with long-term stability and suppresses Mn dissolution, the spinel/carbon hybrid exhibits a reversible capacity of 150 mAh g–1 and a capacity retention of 94% over 500 cycles at a high rate of 500 mA g–1. The remarkable electrode performance results from the facile charge transfer and Zn insertion in the structurally robust spinel featuring small particle size and abundant cation vacancies, as evidenced by combined electrochemical measurements, XRD, Raman, synchrotron X-ray absorption spectroscopy, FTIR, and NMR analysis. The results would enlighten and pr...

1,337 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss how to pave the way for developing rechargeable aqueous zinc-ion batteries (ZIBs), including an analysis of the problems encountered in both cathode/anode materials and electrolyte optimization.
Abstract: Zinc-ion batteries built on water-based electrolytes featuring compelling price-points, competitive performance, and enhanced safety represent advanced energy storage chemistry as a promising alternative to current lithium-ion battery systems. Attempts to develop rechargeable aqueous zinc-ion batteries (ZIBs) can be traced to as early as the 1980s; however, since 2015, the research activity in this field has surged throughout the world. Despite the achievements made in exploring electrode materials so far, significant challenges remain at the material level and even on the whole aqueous ZIBs system, leading to the failure of ZIBs to meet commercial requirements. This review aims to discuss how to pave the way for developing aqueous ZIBs. The current research efforts related to aqueous ZIBs electrode materials and electrolytes are summarized, including an analysis of the problems encountered in both cathode/anode materials and electrolyte optimization. Some concerns and feasible solutions for achieving practical aqueous ZIBs are discussed in detail. We would like to point out that merely improving the electrode materials is not enough; synergistic optimization strategies toward the whole battery system are also deeply needed. Finally, some perspectives are provided on the subsequent optimization design for further research efforts in the aqueous ZIB field.

1,033 citations

Journal ArticleDOI
TL;DR: In this article, a polyamide coating layer which elevates the nucleation barrier and restricts Zn2+2D diffusion is constructed to effectively regulate the aqueous Zn deposition behavior.
Abstract: Aqueous Zn anodes have been revisited for their intrinsic safety, low cost, and high volumetric capacity; however, deep-seated issues of dendrite growth and intricate side-reactions hindered their rejuvenation. Herein, a “brightener-inspired” polyamide coating layer which elevates the nucleation barrier and restricts Zn2+ 2D diffusion is constructed to effectively regulate the aqueous Zn deposition behavior. Importantly, serving as a buffer layer that isolates active Zn from bulk electrolytes, this interphase also suppresses free water/O2-induced corrosion and passivation. With this synergy effect, the polymer-modified Zn anode produces reversible, dendrite-free plating/stripping with a 60-fold enhancement in running lifetime (over 8000 hours) compared to the bare Zn, and even at an ultrahigh areal capacity of 10 mA h cm−2 (10 mA cm−2 for 1 h, 85% depth of discharge). This efficient rechargeability for Zn anodes enables a substantially stable full-cell paired with a MnO2 cathode. The strategy presented here is straightforward and scalable, representing a stark, but promising approach to solve the anode issues in advanced Zn batteries.

1,008 citations

Journal ArticleDOI
28 Apr 2017-Science
TL;DR: It is demonstrated that the three-dimensional (3D) zinc form-factor elevates the performance of nickel–zinc alkaline cells in three fields of use: >90% theoretical depth of discharge in primary (single-use) cells, >100 high-rate cycles at 40% DODZn at lithium-ion–commensurate specific energy, and the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles.
Abstract: The next generation of high-performance batteries should include alternative chemistries that are inherently safer to operate than nonaqueous lithium-based batteries. Aqueous zinc-based batteries can answer that challenge because monolithic zinc sponge anodes can be cycled in nickel–zinc alkaline cells hundreds to thousands of times without undergoing passivation or macroscale dendrite formation. We demonstrate that the three-dimensional (3D) zinc form-factor elevates the performance of nickel–zinc alkaline cells in three fields of use: (i) >90% theoretical depth of discharge (DODZn) in primary (single-use) cells, (ii) >100 high-rate cycles at 40% DODZn at lithium-ion–commensurate specific energy, and (iii) the tens of thousands of power-demanding duty cycles required for start-stop microhybrid vehicles.

908 citations