scispace - formally typeset
Search or ask a question
Journal ArticleDOI

BorderSense: Border patrol through advanced wireless sensor networks

TL;DR: The framework to deploy and operate BorderSense, a hybrid wireless sensor network architecture for border patrol systems, is developed and the most advanced sensor network technologies, including the wireless multimedia sensor networks and the wireless underground sensor networks are used.
Abstract: The conventional border patrol systems suffer from intensive human involvement. Recently, unmanned border patrol systems employ high-tech devices, such as unmanned aerial vehicles, unattended ground sensors, and surveillance towers equipped with camera sensors. However, any single technique encounters inextricable problems, such as high false alarm rate and line-of-sight-constraints. There lacks a coherent system that coordinates various technologies to improve the system accuracy. In this paper, the concept of BorderSense, a hybrid wireless sensor network architecture for border patrol systems, is introduced. BorderSense utilizes the most advanced sensor network technologies, including the wireless multimedia sensor networks and the wireless underground sensor networks. The framework to deploy and operate BorderSense is developed. Based on the framework, research challenges and open research issues are discussed.
Citations
More filters
Journal ArticleDOI
01 May 2013
TL;DR: In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs, and the main FANET design challenges are introduced.
Abstract: One of the most important design problems for multi-UAV (Unmanned Air Vehicle) systems is the communication which is crucial for cooperation and collaboration between the UAVs. If all UAVs are directly connected to an infrastructure, such as a ground base or a satellite, the communication between UAVs can be realized through the in-frastructure. However, this infrastructure based communication architecture restricts the capabilities of the multi-UAV systems. Ad-hoc networking between UAVs can solve the problems arising from a fully infrastructure based UAV networks. In this paper, Flying Ad-Hoc Networks (FANETs) are surveyed which is an ad hoc network connecting the UAVs. The differences between FANETs, MANETs (Mobile Ad-hoc Networks) and VANETs (Vehicle Ad-Hoc Networks) are clarified first, and then the main FANET design challenges are introduced. Along with the existing FANET protocols, open research issues are also discussed.

1,072 citations

Journal ArticleDOI
TL;DR: A top-down survey of the trade-offs between application requirements and lifetime extension that arise when designing wireless sensor networks is presented and a new classification of energy-conservation schemes found in the recent literature is presented.

785 citations


Cites background from "BorderSense: Border patrol through ..."

  • ...Such networks can be used for soil moisture reporting in agriculture [43], infrastructure supervision, intrusion detection [44] and transport systems [45]....

    [...]

Journal ArticleDOI
01 Sep 2014
TL;DR: A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks is proposed, which ensures mutual authentication between the user, sensor node, and the gateway node (GWN), although the GWN is never contacted by the user.
Abstract: The idea of the Internet of Things (IOT) notion is that everything within the global network is accessible and interconnected. As such Wireless Sensor Networks (WSN) play a vital role in such an environment, since they cover a wide application field. Such interconnection can be seen from the aspect of a remote user who can access a single desired sensor node from the WSN without the necessity of firstly connecting with a gateway node (GWN). This paper focuses on such an environment and proposes a novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks. The proposed scheme enables a remote user to securely negotiate a session key with a general sensor node, using a lightweight key agreement protocol. The proposed scheme ensures mutual authentication between the user, sensor node, and the gateway node (GWN), although the GWN is never contacted by the user. The proposed scheme has been adapted to the resource-constrained architecture of the WSN, thus it uses only simple hash and XOR computations. Our proposed scheme tackles these risks and the challenges posed by the IOT, by ensuring high security and performance features.

529 citations


Cites background from "BorderSense: Border patrol through ..."

  • ...Today we talk about the use of WSN for traffic monitoring [3], pipeline monitoring [4], landslide detection [5], methane leak detection [6], border patrol [7], precision agriculture [8], rehabilitation applications [9], laboratory tutoring [10], asset tracking [11], real-time soccer playing monitoring [12] and many more [13–16]....

    [...]

Journal ArticleDOI
01 Jan 2016
TL;DR: This paper focuses on overcoming the security weaknesses of Turkanovic et?al.'s scheme, by proposing a new and improved UAKAS which enables the same functionality but improves the security level and enables the HWSN to dynamically grow without influencing any party involved in the UAKas.
Abstract: The concept of Internet of Things (IOT), which is already at our front doors, is that every object in the Internet infrastructure (II) is interconnected into a global dynamic expanding network. Sensors and smart objects are beside classical computing devices key parties of the IOT. We can already exploit the benefits of the IOT by using various weareables or smart phones which are full of diverse sensors and actuators and are connected to the II via GPRS or Wi-Fi. Since sensors are a key part of IOT, thus are wireless sensor networks (WSN). Researchers are already working on new techniques and efficient approaches on how to integrate WSN better into the IOT environment. One aspect of it is the security aspect of the integration. Recently, Turkanovic et?al.'s proposed a highly efficient and novel user authentication and key agreement scheme (UAKAS) for heterogeneous WSN (HWSN) which was adapted to the IOT notion. Their scheme presented a novel approach where a user from the IOT can authenticate with a specific sensor node from the HWSN without having to communicate with a gateway node. Moreover their scheme is highly efficient since it is based on a simple symmetric cryptosystem. Unfortunately we have found that Turkanovic et?al.'s scheme has some security shortcomings and is susceptible to some cryptographic attacks. This paper focuses on overcoming the security weaknesses of Turkanovic et?al.'s scheme, by proposing a new and improved UAKAS. The proposed scheme enables the same functionality but improves the security level and enables the HWSN to dynamically grow without influencing any party involved in the UAKAS. The results of security analysis by BAN-logic and AVISPA tools confirm the security properties of the proposed scheme.

401 citations

Journal ArticleDOI
TL;DR: The challenges with using Uavs as relay nodes in an ad-hoc manner are identified, network models of UAVs are introduced, and open research issues with analyzing opportunities and future work are depicted.
Abstract: In recent years, the capabilities and roles of Unmanned Aerial Vehicles (UAVs) have rapidly evolved, and their usage in military and civilian areas is extremely popular as a result of the advances in technology of robotic systems such as processors, sensors, communications, and networking technologies. While this technology is progressing, development and maintenance costs of UAVs are decreasing relatively. The focus is changing from use of one large UAV to use of multiple UAVs, which are integrated into teams that can coordinate to achieve high-level goals. This level of coordination requires new networking models that can be set up on highly mobile nodes such as UAVs in the fleet. Such networking models allow any two nodes to communicate directly if they are in the communication range, or indirectly through a number of relay nodes such as UAVs. Setting up an ad-hoc network between flying UAVs is a challenging issue, and requirements can differ from traditional networks, Mobile Ad-hoc Networks (MANETs) and Vehicular Ad-hoc Networks (VANETs) in terms of node mobility, connectivity, message routing, service quality, application areas, etc. This paper identifies the challenges with using UAVs as relay nodes in an ad-hoc manner, introduces network models of UAVs, and depicts open research issues with analyzing opportunities and future work.

318 citations


Cites methods from "BorderSense: Border patrol through ..."

  • ...To solve this problem and to increase the network scalability, one appropriate solution is the use of hierarchical routing protocols [35, 36], which divide FANET into clusters of UAVs....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Existing solutions and open research issues at the application, transport, network, link, and physical layers of the communication protocol stack are investigated, along with possible cross-layer synergies and optimizations.

2,311 citations


"BorderSense: Border patrol through ..." refers background in this paper

  • ...Recently, unmanned border patrol systems employ high-tech devices, such as unmanned aerial vehicles, unattended ground sensors, and surveillance towers equipped with camera sensors....

    [...]

Journal ArticleDOI
TL;DR: The objective of this work is to survey and put in perspective the existing IMM methods for target tracking problems, with special attention to the assumptions underlying each algorithm and its applicability to various situations.
Abstract: The Interacting Multiple Model (IMM) estimator is a suboptimal hybrid filter that has been shown to be one of the most cost-effective hybrid state estimation schemes. The main feature of this algorithm is its ability to estimate the state of a dynamic system with several behavior modes which can "switch" from one to another. In particular, the IMM estimator can be a self-adjusting variable-bandwidth filter, which makes it natural for tracking maneuvering targets. The importance of this approach is that it is the best compromise available currently-between complexity and performance: its computational requirements are nearly linear in the size of the problem (number of models) while its performance is almost the same as that of an algorithm with quadratic complexity. The objective of this work is to survey and put in perspective the existing IMM methods for target tracking problems. Special attention is given to the assumptions underlying each algorithm and its applicability to various situations.

1,024 citations

Journal ArticleDOI
TL;DR: The key ideas behind the CSP algorithms for distributed sensor networks being developed at the University of Wisconsin (UW) are described and the approach to tracking multiple targets that necessarily requires classification techniques becomes a reality.
Abstract: Networks of small, densely distributed wireless sensor nodes are being envisioned and developed for a variety of applications involving monitoring and the physical world in a tetherless fashion. Typically, each individual node can sense in multiple modalities but has limited communication and computation capabilities. Many challenges must be overcome before the concept of sensor networks In particular, there are two critical problems underlying successful operation of sensor networks: (1) efficient methods for exchanging information between the nodes and (2) collaborative signal processing (CSP) between the nodes to gather useful information about the physical world. This article describes the key ideas behind the CSP algorithms for distributed sensor networks being developed at the University of Wisconsin (UW). We also describe the basic ideas on how the CSP algorithms interface with the networking/routing algorithms being developed at Wisconsin (UW-API). We motivate the framework via the problem of detecting and tracking a single maneuvering target. This example illustrates the essential ideas behind the integration between UW-API and UW-CSP algorithms and also highlights the key aspects of detection and localization algorithms. We then build on these ideas to present our approach to tracking multiple targets that necessarily requires classification techniques becomes a reality.

997 citations

Proceedings ArticleDOI
28 Aug 2005
TL;DR: The notion of k-barrier coverage of a belt region using wireless sensors is defined, and efficient algorithms are proposed using which one can quickly determine, after deploying the sensors, whether a region is k- barrier covered.
Abstract: In old times, castles were surrounded by moats (deep trenches filled with water, and even alligators) to thwart or discourage intrusion attempts. One can now replace such barriers with stealthy and wireless sensors. In this paper, we develop theoretical foundations for laying barriers of wireless sensors. We define the notion of k-barrier coverage of a belt region using wireless sensors. We propose efficient algorithms using which one can quickly determine, after deploying the sensors, whether a region is k-barrier covered. Next, we establish the optimal deployment pattern to achieve k-barrier coverage when deploying sensors deterministically. Finally, we consider barrier coverage with high probability when sensors are deployed randomly. We introduce two notions of probabilistic barrier coverage in a belt region -- weak and strong barrier coverage. While weak barrier-coverage with high probability guarantees the detection of intruders as they cross a barrier of stealthy sensors, a sensor network providing strong barrier-coverage with high probability (at the expense of more sensors) guarantees the detection of all intruders crossing a barrier of sensors, even when the sensors are not stealthy. Both types of barrier coverage require significantly less number of sensors than full-coverage, where every point in the region needs to be covered. We derive critical conditions for weak k-barrier coverage, using which one can compute the minimum number of sensors needed to provide weak k-barrier coverage with high probability in a given belt region. Deriving critical conditions for strong k-barrier coverage for a belt region is still an open problem.

751 citations


"BorderSense: Border patrol through ..." refers background or methods in this paper

  • ...The definition of the k-barrier coverage is as follows....

    [...]

  • ...Then, according to Proposition 1, given a border area with axial distance d, the minimum number of ground/underground sensors required to achieve k-barrier coverage is k d2RUGS l m ....

    [...]

  • ...According to [16], the optimal manual deployment strategy to achieve k-barrier coverage in a belt region is to deploy k rows of sensors along a shortest path (line or curve) across the length of the region....

    [...]