scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Boundary Layer Climates.

01 Aug 1980-Journal of Applied Ecology-Vol. 17, Iss: 2, pp 517
About: This article is published in Journal of Applied Ecology.The article was published on 1980-08-01. It has received 4943 citations till now. The article focuses on the topics: Boundary layer.
Citations
More filters
Book
01 Sep 2011
TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Abstract: I. CONTEXT * The Ecosystem Concept * Earth's Climate System * Geology and Soils * II. MECHANISMS * Terrestrial Water and Energy Balance * Carbon Input to Terrestrial Ecosystems * Terrestrial Production Processes * Terrestrial Decomposition * Terrestrial Plant Nutrient Use * Terrestrial Nutrient Cycling * Aquatic Carbon and Nutrient Cycling * Trophic Dynamics * Community Effects on Ecosystem Processes * III. PATTERNS * Temporal Dynamics * Landscape Heterogeneity and Ecosystem Dynamics * IV. INTEGRATION * Global Biogeochemical Cycles * Managing and Sustaining Ecosystem * Abbreviations * Glossary * References

3,086 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the PRISM (Parameter-elevation relationships on independent slopes model) interpolation method to develop data sets that reflected, as closely as possible, the current state of knowledge of spatial climate patterns in the United States.
Abstract: Spatial climate data sets of 1971–2000 mean monthly precipitation and minimum and maximum temperature were developed for the conterminous United States These 30-arcsec (∼800-m) grids are the official spatial climate data sets of the US Department of Agriculture The PRISM (Parameter-elevation Relationships on Independent Slopes Model) interpolation method was used to develop data sets that reflected, as closely as possible, the current state of knowledge of spatial climate patterns in the United States PRISM calculates a climate–elevation regression for each digital elevation model (DEM) grid cell, and stations entering the regression are assigned weights based primarily on the physiographic similarity of the station to the grid cell Factors considered are location, elevation, coastal proximity, topographic facet orientation, vertical atmospheric layer, topographic position, and orographic effectiveness of the terrain Surface stations used in the analysis numbered nearly 13 000 for precipitation and 10 000 for temperature Station data were spatially quality controlled, and short-period-of-record averages adjusted to better reflect the 1971–2000 period PRISM interpolation uncertainties were estimated with cross-validation (C-V) mean absolute error (MAE) and the 70% prediction interval of the climate–elevation regression function The two measures were not well correlated at the point level, but were similar when averaged over large regions The PRISM data set was compared with the WorldClim and Daymet spatial climate data sets The comparison demonstrated that using a relatively dense station data set and the physiographically sensitive PRISM interpolation process resulted in substantially improved climate grids over those of WorldClim and Daymet The improvement varied, however, depending on the complexity of the region Mountainous and coastal areas of the western United States, characterized by sparse data coverage, large elevation gradients, rain shadows, inversions, cold air drainage, and coastal effects, showed the greatest improvement The PRISM data set benefited from a peer review procedure that incorporated local knowledge and data into the development process Copyright © 2008 Royal Meteorological Society

2,447 citations

Journal ArticleDOI
TL;DR: The Local Climate Zone (LCZ) classification system as discussed by the authors was developed to address the inadequacies of urban-rural description, and consists of 17 zone types at the local scale (102 to 104 m).
Abstract: The effect of urban development on local thermal climate is widely documented in scientific literature. Observations of urban–rural air temperature differences—or urban heat islands (UHIs)—have been reported for cities and regions worldwide, often with local field sites that are extremely diverse in their physical and climatological characteristics. These sites are usually described only as “urban” or “rural,” leaving much uncertainty about the actual exposure and land cover of the sites. To address the inadequacies of urban–rural description, the “local climate zone” (LCZ) classification system has been developed. The LCZ system comprises 17 zone types at the local scale (102 to 104 m). Each type is unique in its combination of surface structure, cover, and human activity. Classification of sites into appropriate LCZs requires basic metadata and surface characterization. The zone definitions provide a standard framework for reporting and comparing field sites and their temperature observations. The LCZ s...

2,340 citations

Journal ArticleDOI
TL;DR: Here, the principles of biophysical ecology can be used to link spatial data to the physiological responses and constraints of organisms, which provides a mechanistic view of the fundamental niche which can then be mapped to the landscape to infer range constraints.
Abstract: Species distribution models (SDMs) use spatial environmental data to make inferences on species' range limits and habitat suitability. Conceptually, these models aim to determine and map components of a species' ecological niche through space and time, and they have become important tools in pure and applied ecology and evolutionary biology. Most approaches are correlative in that they statistically link spatial data to species distribution records. An alternative strategy is to explicitly incorporate the mechanistic links between the functional traits of organisms and their environments into SDMs. Here, we review how the principles of biophysical ecology can be used to link spatial data to the physiological responses and constraints of organisms. This provides a mechanistic view of the fundamental niche which can then be mapped to the landscape to infer range constraints. We show how physiologically based SDMs can be developed for different organisms in different environmental contexts. Mechanistic SDMs have different strengths and weaknesses to correlative approaches, and there are many exciting and unexplored prospects for integrating the two approaches. As physiological knowledge becomes better integrated into SDMs, we will make more robust predictions of range shifts in novel or non-equilibrium contexts such as invasions, translocations, climate change and evolutionary shifts.

1,821 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the large-scale parameterization of the surface fluxes of sensible and latent heat is properly expressed in terms of energetic considerations over land while formulas of the bulk aerodynamic type are most suitahle over the sea.
Abstract: In an introductory review it is reemphasized that the large-scale parameterization of the surface fluxes of sensible and latent heat is properly expressed in terms of energetic considerations over land while formulas of the bulk aerodynamic type are most suitahle over the sea. A general framework is suggested. Data from a number of saturated land sites and open water sites in the absence of advection suggest a widely applicable formula for the relationship between sensible and latent heat fluxes. For drying land surfaces, we assume that the evaporation rate is given by the same formula for evaporation multiplied by a factor. This factor is found to remain at unity while an amount of water, varying from one site to another, is evaporated. Following this a linear decrease sets in, reducing the evaporation rate to zero after a further 5 cm of evaporation, the same at several sites examined.

5,918 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the relationship existing between the size of a village, town or city and the magnitude of the urban heat island it produces by analyzing data gathered by automobile traverses in 10 settlements on the St. Lawrence Lowland, whose populations range from 1000 to 2 million inhabitants.

1,938 citations

Book
01 Jan 1972
TL;DR: In this paper, the authors focus on the current concern of human impacts on the environment, including greenhouse gases, the destruction of the ozone layer, carbon cycles, and the thermal role of oceans.
Abstract: In this updated sixth edition the authors focus on the current concern of human impacts on the environment. The topics of greenhouse gases, the destruction of the ozone layer, carbon cycles, and the thermal role of oceans are covered in a revised chapter 1. The authors have intended this book to be a nontechnical account of the dynamics of the atmosphere and of the world climate system. The book presents a general understanding of weather phenomena and of global climates.

1,116 citations

Journal ArticleDOI
TL;DR: In this article, a derivation for the effective atmospheric emissivity to predict downcoming long-wave radiation at ground level under a clear sky and for a nearly standard atmosphere is presented.
Abstract: A derivation is presented for the effective atmospheric emissivity to predict downcoming long-wave radiation at ground level under a clear sky and for a nearly standard atmosphere. The results are in good agreement with those obtainable with empirical formulae based on water vapor pressure and temperature. However, the proposed formulation has the advantage that its simple functional form is based on physical grounds without the need for empirical parameters from radiation measurements. Also, in contrast to the empirical equations, it may be adjusted in a simple way to reflect changes in climatic and atmospheric conditions.

914 citations