scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Boundary-layer receptivity to freestream disturbances

01 Jan 2002-Annual Review of Fluid Mechanics (Annual Reviews)-Vol. 34, Iss: 34, pp 291-319
TL;DR: The boundary-layer receptivity to external acoustic and vortical disturbances is reviewed in this article. But, the authors do not consider the effects of external acoustic or vortic disturbances on the boundary layer.
Abstract: The current understanding of boundary-layer receptivity to external acoustic and vortical disturbances is reviewed. Recent advances in theoretical modeling, numerical simulations, and experiments are discussed. It is shown that aspects of the theory have been validated and that the mechanisms by which freestream disturbances provide the initial conditions for unstable waves are better understood. Challenges remain, however, particularly with respect to freestream turbulence
Citations
More filters
Journal ArticleDOI
TL;DR: The recent progress in three-dimensional boundary-layer stability and transition is reviewed in this paper, focusing on the crossflow instability that leads to transition on swept wings and rotating disks.
Abstract: ▪ Abstract The recent progress in three-dimensional boundary-layer stability and transition is reviewed. The material focuses on the crossflow instability that leads to transition on swept wings and rotating disks. Following a brief overview of instability mechanisms and the crossflow problem, a summary of the important findings of the 1990s is given.

600 citations


Cites background from "Boundary-layer receptivity to frees..."

  • ...The initial conditions for these instabilities are introduced through the receptivity process, which depends on a variety of factors (Saric et al. 2002)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effect of high levels of free-stream turbulence on the transition in a Blasius boundary layer is studied by means of direct numerical simulations, where a synthetic turbulent inflow is obtained as superposition of modes of the continuous spectrum of the Orr-Sommerfeld and Squire operators.
Abstract: The effect of high levels of free-stream turbulence on the transition in a Blasius boundary layer is studied by means of direct numerical simulations, where a synthetic turbulent inflow is obtained as superposition of modes of the continuous spectrum of the Orr–Sommerfeld and Squire operators. In the present bypass scenario the flow in the boundary layer develops streamwise elongated regions of high and low streamwise velocity and it is suggested that the breakdown into turbulent spots is related to local instabilities of the strong shear layers associated with these streaks. Flow structures typical of the spot precursors are presented and these show important similarities with the flow structures observed in previous studies on the secondary instability and breakdown of steady symmetric streaks.Numerical experiments are performed by varying the energy spectrum of the incoming perturbation. It is shown that the transition location moves to lower Reynolds numbers by increasing the integral length scale of the free-stream turbulence. The receptivity to free-stream turbulence is also analysed and it is found that two distinct physical mechanisms are active depending on the energy content of the external disturbance. If low-frequency modes diffuse into the boundary layer, presumably at the leading edge, the streaks are induced by streamwise vorticity through the linear lift-up effect. If, conversely, the free-stream perturbations are mainly located above the boundary layer a nonlinear process is needed to create streamwise vortices inside the shear layer. The relevance of the two mechanisms is discussed.

373 citations

Journal ArticleDOI
TL;DR: In the 20 years since the review by Kleiser & Zang (1991) on the direct numerical simulation (DNS) of the boundary-layer transition, significant progress has been made on DNS in the hypersonic flow regime and in the spatial DNS approach as discussed by the authors.
Abstract: The prediction of the laminar-turbulent transition of boundary layers is critically important to the development of hypersonic vehicles because the transition has a first-order impact on aerodynamic heating, drag, and vehicle operation. The success of transition prediction relies on a fundamental understanding of the relevant physical mechanisms. In the 20 years since the review by Kleiser & Zang (1991) on the direct numerical simulation (DNS) of the boundary-layer transition, significant progress has been made on DNS in the hypersonic flow regime and in the spatial DNS approach. Many high-order shock-capturing and shock-fitting finite-difference methods have been developed and extensively applied to numerical simulations of the hypersonic boundary-layer transition. DNS has become a powerful research tool and has led to discoveries of new transition mechanisms. This article reviews the recent progress of DNS on hypersonic boundary-layer receptivity, instability, and transition. The current status and future directions are also presented.

280 citations


Cites background from "Boundary-layer receptivity to frees..."

  • ...In general, transition is a result of the nonlinear response of a laminar boundary layer to various environmental disturbances (Saric et al. 2002)....

    [...]

  • ...…boundary-layer transition with emphasis on nonlinear breakdown experiments, Saric (1994) on boundary-layer instabilities involving Görtler vortices, Saric et al. (2002, 2003) on advances in boundary-layer receptivity and cross-flow instability to external acoustic and vortical disturbances,…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors studied the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST).
Abstract: This paper is the first part of a two-part study on the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST). The main objective of the current paper is to study the linear stability characteristics of the boundary-layer wave modes and their mutual resonant interactions. The numerical solutions of both steady base flow and unsteady flow induced by forcing disturbances are obtained by using a fifth-order shock-fitting method. Meanwhile, the LST results are used to study the supersonic boundary-layer stability characteristics relevant to the receptivity study. It is found that, in addition to the conventional first and second modes, there exist a family of stable wave modes in the supersonic boundary layer. These modes play a very important role in the receptivity process of excitation of the unstable Mack modes, especially the second mode. These stable modes are termed mode I, mode II, etc., in this paper. Though mode I and mode II waves are linearly stable, they can have resonant (synchronization) interactions with both acoustic waves and the Mack-mode waves. Therefore, the stable wave modes such as mode I and mode II are critical in transferring wave energy between the acoustic waves and the unstable second mode. The effects of frequencies and wall boundary conditions for the temperature perturbations on the boundary-layer stability and receptivity are also studied.

215 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present direct comparisons of experimental results on transition in wall-bounded flows obtained by flow visualizations, hot-film measurement, and particle-image velocimetry, along with a brief mention of relevant theoretical progresses, based on a critical review of about 120 selected publications.
Abstract: In this paper, we present direct comparisons of experimental results on transition in wall-bounded flows obtained by flow visualizations, hot-film measurement, and particle-image velocimetry, along with a brief mention of relevant theoretical progresses, based on a critical review of about 120 selected publications. Despite somewhat different initial disturbance conditions used in experiments, the flow structures were found to be practically the same. The following observed flow structures are considered to be of fundamental importance in understanding transitional wall-bounded flows: the three-dimensional nonlinear wave packets called solitonlike coherent structures (SCSs) in boundary layer and pipe flows, the Λ-vortex, the secondary vortex loops, and the chain of ring vortices. The dynamic processes of the formation of these structures and transition as newly discovered by recent experiments include the following: (1) The sequential interaction processes between the Λ-vortex and the secondary vortex loops, which control the manner by which the chain of ring vortices is periodically introduced from the wall region into the outer region of the boundary layer. (2) The generation of high-frequency vortices, which is one of the key issues for understanding both transitional and developed turbulent boundary layers (as well as other flows), of which several explanations have been proposed but a particularly clear interpretation can be provided by the experimental discovery of secondary vortex loops. The ignorance of secondary vortex loops would make the dynamic processes and flow structures in a transitional boundary layer inconsistent with previous discoveries. (3) The dominant role of SCSs in all turbulent bursting, which is considered as the key mechanism of turbulent production in a low Reynolds-number turbulent boundary layer. Of direct relevance to bursting is the low-speed streaks, whose formation mechanism and link to the flow structures in wall-bounded flows can be answered more clearly than before in terms of the SCS dynamics. The observed SCSs and secondary vortex loops not only enable revisiting the classic story of wall-bounded flow transition, but also open a new avenue to reconstruct the possible universal scenario for wall-bounded flow transition.

171 citations

References
More filters
Book
28 Dec 2000
TL;DR: In this article, the authors present an approach to the Viscous Initial Value Problem with the objective of finding the optimal growth rate and the optimal response to the initial value problem.
Abstract: 1 Introduction and General Results.- 1.1 Introduction.- 1.2 Nonlinear Disturbance Equations.- 1.3 Definition of Stability and Critical Reynolds Numbers.- 1.3.1 Definition of Stability.- 1.3.2 Critical Reynolds Numbers.- 1.3.3 Spatial Evolution of Disturbances.- 1.4 The Reynolds-Orr Equation.- 1.4.1 Derivation of the Reynolds-Orr Equation.- 1.4.2 The Need for Linear Growth Mechanisms.- I Temporal Stability of Parallel Shear Flows.- 2 Linear Inviscid Analysis.- 2.1 Inviscid Linear Stability Equations.- 2.2 Modal Solutions.- 2.2.1 General Results.- 2.2.2 Dispersive Effects and Wave Packets.- 2.3 Initial Value Problem.- 2.3.1 The Inviscid Initial Value Problem.- 2.3.2 Laplace Transform Solution.- 2.3.3 Solutions to the Normal Vorticity Equation.- 2.3.4 Example: Couette Flow.- 2.3.5 Localized Disturbances.- 3 Eigensolutions to the Viscous Problem.- 3.1 Viscous Linear Stability Equations.- 3.1.1 The Velocity-Vorticity Formulation.- 3.1.2 The Orr-Sommerfeld and Squire Equations.- 3.1.3 Squire's Transformation and Squire's Theorem.- 3.1.4 Vector Modes.- 3.1.5 Pipe Flow.- 3.2 Spectra and Eigenfunctions.- 3.2.1 Discrete Spectrum.- 3.2.2 Neutral Curves.- 3.2.3 Continuous Spectrum.- 3.2.4 Asymptotic Results.- 3.3 Further Results on Spectra and Eigenfunctions.- 3.3.1 Adjoint Problem and Bi-Orthogonality Condition.- 3.3.2 Sensitivity of Eigenvalues.- 3.3.3 Pseudo-Eigenvalues.- 3.3.4 Bounds on Eigenvalues.- 3.3.5 Dispersive Effects and Wave Packets.- 4 The Viscous Initial Value Problem.- 4.1 The Viscous Initial Value Problem.- 4.1.1 Motivation.- 4.1.2 Derivation of the Disturbance Equations.- 4.1.3 Disturbance Measure.- 4.2 The Forced Squire Equation and Transient Growth.- 4.2.1 Eigenfunction Expansion.- 4.2.2 Blasius Boundary Layer Flow.- 4.3 The Complete Solution to the Initial Value Problem.- 4.3.1 Continuous Formulation.- 4.3.2 Discrete Formulation.- 4.4 Optimal Growth.- 4.4.1 The Matrix Exponential.- 4.4.2 Maximum Amplification.- 4.4.3 Optimal Disturbances.- 4.4.4 Reynolds Number Dependence of Optimal Growth.- 4.5 Optimal Response and Optimal Growth Rate.- 4.5.1 The Forced Problem and the Resolvent.- 4.5.2 Maximum Growth Rate.- 4.5.3 Response to Stochastic Excitation.- 4.6 Estimates of Growth.- 4.6.1 Bounds on Matrix Exponential.- 4.6.2 Conditions for No Growth.- 4.7 Localized Disturbances.- 4.7.1 Choice of Initial Disturbances.- 4.7.2 Examples.- 4.7.3 Asymptotic Behavior.- 5 Nonlinear Stability.- 5.1 Motivation.- 5.1.1 Introduction.- 5.1.2 A Model Problem.- 5.2 Nonlinear Initial Value Problem.- 5.2.1 The Velocity-Vorticity Equations.- 5.3 Weakly Nonlinear Expansion.- 5.3.1 Multiple-Scale Analysis.- 5.3.2 The Landau Equation.- 5.4 Three-Wave Interactions.- 5.4.1 Resonance Conditions.- 5.4.2 Derivation of a Dynamical System.- 5.4.3 Triad Interactions.- 5.5 Solutions to the Nonlinear Initial Value Problem.- 5.5.1 Formal Solutions to the Nonlinear Initial Value Problem.- 5.5.2 Weakly Nonlinear Solutions and the Center Manifold.- 5.5.3 Nonlinear Equilibrium States.- 5.5.4 Numerical Solutions for Localized Disturbances.- 5.6 Energy Theory.- 5.6.1 The Energy Stability Problem.- 5.6.2 Additional Constraints.- II Stability of Complex Flows and Transition.- 6 Temporal Stability of Complex Flows.- 6.1 Effect of Pressure Gradient and Crossflow.- 6.1.1 Falkner-Skan (FS) Boundary Layers.- 6.1.2 Falkner-Skan-Cooke (FSC) Boundary layers.- 6.2 Effect of Rotation and Curvature.- 6.2.1 Curved Channel Flow.- 6.2.2 Rotating Channel Flow.- 6.2.3 Combined Effect of Curvature and Rotation.- 6.3 Effect of Surface Tension.- 6.3.1 Water Table Flow.- 6.3.2 Energy and the Choice of Norm.- 6.3.3 Results.- 6.4 Stability of Unsteady Flow.- 6.4.1 Oscillatory Flow.- 6.4.2 Arbitrary Time Dependence.- 6.5 Effect of Compressibility.- 6.5.1 The Compressible Initial Value Problem.- 6.5.2 Inviscid Instabilities and Rayleigh's Criterion.- 6.5.3 Viscous Instability.- 6.5.4 Nonmodal Growth.- 7 Growth of Disturbances in Space.- 7.1 Spatial Eigenvalue Analysis.- 7.1.1 Introduction.- 7.1.2 Spatial Spectra.- 7.1.3 Gaster's Transformation.- 7.1.4 Harmonic Point Source.- 7.2 Absolute Instability.- 7.2.1 The Concept of Absolute Instability.- 7.2.2 Briggs' Method.- 7.2.3 The Cusp Map.- 7.2.4 Stability of a Two-Dimensional Wake.- 7.2.5 Stability of Rotating Disk Flow.- 7.3 Spatial Initial Value Problem.- 7.3.1 Primitive Variable Formulation.- 7.3.2 Solution of the Spatial Initial Value Problem.- 7.3.3 The Vibrating Ribbon Problem.- 7.4 Nonparallel Effects.- 7.4.1 Asymptotic Methods.- 7.4.2 Parabolic Equations for Steady Disturbances.- 7.4.3 Parabolized Stability Equations (PSE).- 7.4.4 Spatial Optimal Disturbances.- 7.4.5 Global Instability.- 7.5 Nonlinear Effects.- 7.5.1 Nonlinear Wave Interactions.- 7.5.2 Nonlinear Parabolized Stability Equations.- 7.5.3 Examples.- 7.6 Disturbance Environment and Receptivity.- 7.6.1 Introduction.- 7.6.2 Nonlocalized and Localized Receptivity.- 7.6.3 An Adjoint Approach to Receptivity.- 7.6.4 Receptivity Using Parabolic Evolution Equations.- 8 Secondary Instability.- 8.1 Introduction.- 8.2 Secondary Instability of Two-Dimensional Waves.- 8.2.1 Derivation of the Equations.- 8.2.2 Numerical Results.- 8.2.3 Elliptical Instability.- 8.3 Secondary Instability of Vortices and Streaks.- 8.3.1 Governing Equations.- 8.3.2 Examples of Secondary Instability of Streaks and Vortices.- 8.4 Eckhaus Instability.- 8.4.1 Secondary Instability of Parallel Flows.- 8.4.2 Parabolic Equations for Spatial Eckhaus Instability.- 9 Transition to Turbulence.- 9.1 Transition Scenarios and Thresholds.- 9.1.1 Introduction.- 9.1.2 Three Transition Scenarios.- 9.1.3 The Most Likely Transition Scenario.- 9.1.4 Conclusions.- 9.2 Breakdown of Two-Dimensional Waves.- 9.2.1 The Zero Pressure Gradient Boundary Layer.- 9.2.2 Breakdown of Mixing Layers.- 9.3 Streak Breakdown.- 9.3.1 Streaks Forced by Blowing or Suction.- 9.3.2 Freestream Turbulence.- 9.4 Oblique Transition.- 9.4.1 Experiments and Simulations in Blasius Flow.- 9.4.2 Transition in a Separation Bubble.- 9.4.3 Compressible Oblique Transition.- 9.5 Transition of Vortex-Dominated Flows.- 9.5.1 Transition in Flows with Curvature.- 9.5.2 Direct Numerical Simulations of Secondary Instability of Crossflow Vortices.- 9.5.3 Experimental Investigations of Breakdown of Cross-flow Vortices.- 9.6 Breakdown of Localized Disturbances.- 9.6.1 Experimental Results for Boundary Layers.- 9.6.2 Direct Numerical Simulations in Boundary Layers.- 9.7 Transition Modeling.- 9.7.1 Low-Dimensional Models of Subcritical Transition.- 9.7.2 Traditional Transition Prediction Models.- 9.7.3 Transition Prediction Models Based on Nonmodal Growth.- 9.7.4 Nonlinear Transition Modeling.- III Appendix.- A Numerical Issues and Computer Programs.- A.1 Global versus Local Methods.- A.2 Runge-Kutta Methods.- A.3 Chebyshev Expansions.- A.4 Infinite Domain and Continuous Spectrum.- A.5 Chebyshev Discretization of the Orr-Sommerfeld Equation.- A.6 MATLAB Codes for Hydrodynamic Stability Calculations.- A.7 Eigenvalues of Parallel Shear Flows.- B Resonances and Degeneracies.- B.1 Resonances and Degeneracies.- B.2 Orr-Sommerfeld-Squire Resonance.- C Adjoint of the Linearized Boundary Layer Equation.- C.1 Adjoint of the Linearized Boundary Layer Equation.- D Selected Problems on Part I.

2,215 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that all parallel inviscid shear flows of constant density are unstable to a wide class of initial infinitesimal three-dimensional disturbances in the sense that, according to linear theory, the kinetic energy of the disturbance will grow at least as fast as linearly in time.
Abstract: It is shown that all parallel inviscid shear flows of constant density are unstable to a wide class of initial infinitesimal three-dimensional disturbances in the sense that, according to linear theory, the kinetic energy of the disturbance will grow at least as fast as linearly in time This can occur even when the disturbance velocities are bounded, because the streamwise length of the disturbed region grows linearly with time This finding may have implications for the observed tendency of turbulent shear flows to develop a longitudinal streaky structure

803 citations


"Boundary-layer receptivity to frees..." refers background in this paper

  • ...This mechanism was first elucidated by Landahl (1980) and then by Hultgren & Gustavsson (1981)....

    [...]

Journal ArticleDOI
TL;DR: Parabolized stability equations (PSE) have been used for aerodynamic design of laminar flow control systems as discussed by the authors, and they can be obtained at modest computational expense.
Abstract: Parabolized stability equations (PSE) have opened new avenues to the analysis of the streamwise growth of linear and nonlinear disturbances in slowly varying shear flows such as boundary layers, jets, and far wakes. Growth mechanisms include both algebraic transient growth and exponential growth through primary and higher instabilities. In contrast to the eigensolutions of traditional linear stability equations, PSE solutions incorporate inhomogeneous initial and boundary conditions as do numerical solutions of the Navier-Stokes equations, but they can be obtained at modest computational expense. PSE codes have developed into a convenient tool to analyze basic mechanisms in boundary-layer flows. The most important area of application, however, is the use of the PSE approach for transition analysis in aerodynamic design. Together with the adjoint linear problem, PSE methods promise improved design capabilities for laminar flow control systems.

744 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the steady boundary-layer approximation to calculate the upstream disturbances experiencing maximum spatial energy growth, which are numerically calculated using techniques commonly employed when solving optimal-control problems for distributed parameter systems.
Abstract: Streamwise streaks are ubiquitous in transitional boundary layers, particularly when subjected to high levels of free-stream turbulence. Using the steady boundary-layer approximation, the upstream disturbances experiencing maximum spatial energy growth are numerically calculated. The calculations use techniques commonly employed when solving optimal-control problems for distributed parameter systems. The calculated optimal disturbances consist of streamwise vortices developing into streamwise streaks. The maximum spatial energy growth was found to scale linearly with the distance from the leading edge. Based on these results, a simple model for prediction of transition location is proposed. Available experiments have been used to correlate the single constant appearing in the model.

639 citations

Journal ArticleDOI
TL;DR: In this article, the dependence on initial conditions of the three-dimensional algebraic spatial instability of the Blasius boundary layer is examined by a recently developed method of receptivity analysis based on the upstream integration of adjoint equations.
Abstract: The dependence on initial conditions of the three-dimensional algebraic spatial instability of the Blasius boundary layer is examined by a recently developed method of receptivity analysis based on the upstream integration of adjoint equations. This method allows us to determine optimal perturbations, i.e. initial perturbations that maximize the energy growth, even in the wavenumber range where the problem is not amenable to a mode analysis, and thus to complement a previous paper in which the small-wavenumber regime was described.

517 citations


"Boundary-layer receptivity to frees..." refers background in this paper

  • ...These modes grow asx1/2, and Luchini (2000), who predicted the same behavior, demonstrated their connection to transient growth....

    [...]