scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Brain-computer interfaces for communication and control.

TL;DR: With adequate recognition and effective engagement of all issues, BCI systems could eventually provide an important new communication and control option for those with motor disabilities and might also give those without disabilities a supplementary control channel or a control channel useful in special circumstances.
About: This article is published in Clinical Neurophysiology.The article was published on 2002-06-01. It has received 6803 citations till now. The article focuses on the topics: Word processing & Imagined speech.
Citations
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BCI2000 system is based upon and gives examples of successful BCI implementations using this system.
Abstract: Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BCI2000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.

2,560 citations

Journal ArticleDOI
TL;DR: This paper compares classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG) in terms of performance and provides guidelines to choose the suitable classification algorithm(s) for a specific BCI.
Abstract: In this paper we review classification algorithms used to design brain–computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.

2,519 citations


Cites background from "Brain-computer interfaces for commu..."

  • ...A brain–computer interface (BCI) is a communication system that does not require any peripheral muscular activity [1]....

    [...]

  • ...To date, very interesting reviews of BCI have been published [1, 6] but none has been specifically dedicated to the review of classification algorithms used for BCI, their properties and their evaluation....

    [...]

  • ...Most brain activity patterns used to drive BCI are related to particular time variations of EEG, possibly in specific frequency bands [1]....

    [...]

Journal ArticleDOI
TL;DR: The brain's electrical signals enable people without muscle control to physically interact with the world through the use of their brains' electrical signals.
Abstract: The brain's electrical signals enable people without muscle control to physically interact with the world.

2,361 citations


Cites background from "Brain-computer interfaces for commu..."

  • ...Available data suggest that mu and beta rhythms from sensorimotor cortex can support independent BCIs....

    [...]

  • ...Both these major paradigms have been applied in BCIs.(36) The term “brain-computer inter-...

    [...]

  • ...Because independent BCIs provide the brain with wholly new output pathways, they are of greater theoretical interest than dependent BCIs....

    [...]

Journal ArticleDOI
TL;DR: The theoretical background of the common spatial pattern (CSP) algorithm, a popular method in brain-computer interface (BCD research), is elucidated and tricks of the trade for achieving a powerful CSP performance are revealed.
Abstract: Due to the volume conduction multichannel electroencephalogram (EEG) recordings give a rather blurred image of brain activity. Therefore spatial filters are extremely useful in single-trial analysis in order to improve the signal-to-noise ratio. There are powerful methods from machine learning and signal processing that permit the optimization of spatio-temporal filters for each subject in a data dependent fashion beyond the fixed filters based on the sensor geometry, e.g., Laplacians. Here we elucidate the theoretical background of the common spatial pattern (CSP) algorithm, a popular method in brain-computer interface (BCD research. Apart from reviewing several variants of the basic algorithm, we reveal tricks of the trade for achieving a powerful CSP performance, briefly elaborate on theoretical aspects of CSP, and demonstrate the application of CSP-type preprocessing in our studies of the Berlin BCI (BBCI) project.

1,799 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Journal ArticleDOI
TL;DR: The theory of communication is extended to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message anddue to the nature of the final destination of the information.
Abstract: HE recent development of various methods of modulation such as PCM and PPM which exchange bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the present paper we will extend the theory to include a number of new factors, in particular the effect of noise in the channel, and the savings possible due to the statistical structure of the original message and due to the nature of the final destination of the information. The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities. These semantic aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design. If the number of messages in the set is finite then this number or any monotonic function of this number can be regarded as a measure of the information produced when one message is chosen from the set, all choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic function. Although this definition must be generalized considerably when we consider the influence of the statistics of the message and when we have a continuous range of messages, we will in all cases use an essentially logarithmic measure. The logarithmic measure is more convenient for various reasons:

10,281 citations

Book
01 Jun 1981
TL;DR: The principles of neural science as mentioned in this paper have been used in neural networks for the purpose of neural network engineering and neural networks have been applied in the field of neural networks, such as:
Abstract: Principles of neural science , Principles of neural science , کتابخانه دانشگاه علوم پزشکی و خدمات بهداشتی درمانی کرمان

8,872 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Book
01 Jan 1996
TL;DR: This is the first in a planned series of 10 volumes that will attempt to "summarize epidemiological knowledge about all major conditions and most risk factors" and use historical trends in main determinants to project mortality and disease burden forward to 2020.
Abstract: This is the first in a planned series of 10 volumes that will attempt to "summarize epidemiological knowledge about all major conditions and most risk factors;...generate assessments of numbers of deaths by cause that are consistent with the total numbers of deaths by age sex and region provided by demographers;...provide methodologies for and assessments of aggregate disease burden that combine--into the Disability-Adjusted Life Year or DALY measure--burden from premature mortality with that from living with disability; and...use historical trends in main determinants to project mortality and disease burden forward to 2020." This first volume includes chapters summarizing results from the project as a whole. (EXCERPT)

7,154 citations