scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Brain criticality beyond avalanches: open problems and how to approach them

01 Sep 2021-Vol. 2, Iss: 3, pp 031003
About: The article was published on 2021-09-01 and is currently open access. It has received 7 citations till now. The article focuses on the topics: Criticality & Self-organized criticality.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the authors propose simple homeostatic mechanisms which promote self-organization of coupling strengths, gains, and firing thresholds in neuronal networks, and show that with an adequate separation of the timescales for the coupling strength and firing threshold dynamics, near criticality (SOqC) can be reached and sustained even in the presence of significant external input.
Abstract: In self-organized criticality (SOC) models, as well as in standard phase transitions, criticality is only present for vanishing external fields $h \to 0$. Considering that this is rarely the case for natural systems, such a restriction poses a challenge to the explanatory power of these models. Besides that, in models of dissipative systems like earthquakes, forest fires, and neuronal networks, there is no true critical behavior, as expressed in clean power laws obeying finite-size scaling, but a scenario called "dirty" criticality or self-organized quasi-criticality (SOqC). Here, we propose simple homeostatic mechanisms which promote self-organization of coupling strengths, gains, and firing thresholds in neuronal networks. We show that with an adequate separation of the timescales for the coupling strength and firing threshold dynamics, near criticality (SOqC) can be reached and sustained even in the presence of significant external input. The firing thresholds adapt to and cancel the inputs ($h$ decreases towards zero). Similar mechanisms can be proposed for the couplings and local thresholds in spin systems and cellular automata, which could lead to applications in earthquake, forest fire, stellar flare, voting, and epidemic modeling.

4 citations

Journal ArticleDOI
16 Sep 2021
TL;DR: In this paper, the authors developed a new theory of E/I balance that relies on two homeostatic adaptation mechanisms: the short-term depression of inhibition and the spike-dependent threshold increase.
Abstract: Neuronal avalanches and asynchronous irregular (AI) firing patterns have been thought to represent distinct frameworks to understand the brain spontaneous activity. The former is typically present in systems where there is a balance between the slow accumulation of tension and its fast dissipation, whereas the latter is accompanied by the balance between synaptic excitation and inhibition (E/I). Here, we develop a new theory of E/I balance that relies on two homeostatic adaptation mechanisms: the short-term depression of inhibition and the spike-dependent threshold increase. First, we turn off the adaptation and show that the so-called static system has a typical critical point commonly attributed to self-organized critical models. Then, we turn on the adaptation and show that the network evolves to a dynamic regime in which: (I) E/I synapses balance regardless of any parameter choice; (II) an AI firing pattern emerges; and (III) neuronal avalanches display power laws. This is the first time that these three phenomena appear simultaneously in the same network activity. Thus, we show that the once thought opposing frameworks may be unified into a single dynamics, provided that adaptation mechanisms are in place. In our model, the AI firing pattern is a direct consequence of the hovering close to the critical line where external inputs are compensated by threshold growth, creating synaptic balance for any E/I weight ratio.

4 citations

Journal ArticleDOI
31 Jan 2022
TL;DR: Wang et al. as mentioned in this paper proposed a link prediction model to predict future links in real-world networks, which also can help us understand the evolution law of real systems and uncover missing links from known parts of the network.
Abstract: Abstract Most real-world systems evolve over time in which entities and the interactions between entities are added and removed—new entities or relationships appear and old entities or relationships vanish. While most network evolutionary models can provide an iterative process for constructing global properties, they cannot capture the evolutionary mechanisms of real systems. Link prediction is hence proposed to predict future links which also can help us understand the evolution law of real systems. The aim of link prediction is to uncover missing links from known parts of the network or quantify the likelihood of the emergence of future links from current structures of the network. However, almost all existing studies ignored that old nodes tend to disappear and new nodes appear over time in real networks, especially in social networks. It is more challenging for link prediction since the new nodes do not have pre-existing structure information. To solve the temporal link prediction problems with new nodes, here we take into account nodal attribute similarity and the shortest path length, namely, ASSPL, to predict future links with new nodes. The results tested on scholar social network and academic funding networks show that it is highly effective and applicable for ASSPL in funding networks with time-evolving. Meanwhile, we make full use of an efficient parameter to exploit how network structure or nodal attribute has an impact on the performance of temporal link prediction. Finally, we find that nodal attributes and network structure complement each other well for predicting future links with new nodes in funding networks.

4 citations

Journal ArticleDOI
TL;DR: A systematic review and reformulate the foundations of studying brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches and a forward-looking perspective on how optimizing the foundations can deepen the understanding of various neuroscience questions.
Abstract: Abstract Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information-processing capacities in the brain. While considerable evidence generally supports this hypothesis, nonnegligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the nontriviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, that is, ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistical techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions.

2 citations

Journal ArticleDOI
28 Jan 2022-Entropy
TL;DR: This article provides a selective review of a specific aspect of information theory that has received less attention than many of the others: as a tool for understanding, modelling, and detecting non-linear phenomena in finance and economics.
Abstract: Information theory is a well-established method for the study of many phenomena and more than 70 years after Claude Shannon first described it in A Mathematical Theory of Communication it has been extended well beyond Shannon’s initial vision. It is now an interdisciplinary tool that is used from ‘causal’ information flow to inferring complex computational processes and it is common to see it play an important role in fields as diverse as neuroscience, artificial intelligence, quantum mechanics, and astrophysics. In this article, I provide a selective review of a specific aspect of information theory that has received less attention than many of the others: as a tool for understanding, modelling, and detecting non-linear phenomena in finance and economics. Although some progress has been made in this area, it is still an under-developed area that I argue has considerable scope for further development.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: A model of a system having a large number of simple equivalent components, based on aspects of neurobiology but readily adapted to integrated circuits, produces a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size.
Abstract: Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.

16,652 citations

Journal ArticleDOI
TL;DR: It is shown that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point, and flicker noise, or 1/f noise, can be identified with the dynamics of the critical state.
Abstract: We show that dynamical systems with spatial degrees of freedom naturally evolve into a self-organized critical point. Flicker noise, or 1/f noise, can be identified with the dynamics of the critical state. This picture also yields insight into the origin of fractal objects.

6,486 citations

Journal ArticleDOI
TL;DR: A model for a large network of "neurons" with a graded response (or sigmoid input-output relation) is studied and collective properties in very close correspondence with the earlier stochastic model based on McCulloch - Pitts neurons are studied.
Abstract: A model for a large network of "neurons" with a graded response (or sigmoid input-output relation) is studied. This deterministic system has collective properties in very close correspondence with the earlier stochastic model based on McCulloch - Pitts neurons. The content- addressable memory and other emergent collective properties of the original model also are present in the graded response model. The idea that such collective properties are used in biological systems is given added credence by the continued presence of such properties for more nearly biological "neurons." Collective analog electrical circuits of the kind described will certainly function. The collective states of the two models have a simple correspondence. The original model will continue to be useful for simulations, because its connection to graded response systems is established. Equations that include the effect of action potentials in the graded response system are also developed.

6,042 citations

Journal ArticleDOI
TL;DR: This Review looks at some key brain theories in the biological and physical sciences from the free-energy perspective, suggesting that several global brain theories might be unified within a free- energy framework.
Abstract: A free-energy principle has been proposed recently that accounts for action, perception and learning. This Review looks at some key brain theories in the biological (for example, neural Darwinism) and physical (for example, information theory and optimal control theory) sciences from the free-energy perspective. Crucially, one key theme runs through each of these theories — optimization. Furthermore, if we look closely at what is optimized, the same quantity keeps emerging, namely value (expected reward, expected utility) or its complement, surprise (prediction error, expected cost). This is the quantity that is optimized under the free-energy principle, which suggests that several global brain theories might be unified within a free-energy framework.

4,866 citations

Journal ArticleDOI
TL;DR: The spatial and topological centrality of the core within cortex suggests an important role in functional integration and a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants.
Abstract: Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.

4,035 citations