scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Breast Cancer Detection in Thermal Infrared Images Using Representation Learning and Texture Analysis Methods

16 Jan 2019-Electronics (Multidisciplinary Digital Publishing Institute)-Vol. 8, Iss: 1, pp 100
TL;DR: This paper proposes a novel method to model the changes on temperatures in normal and abnormal breasts using a representation learning technique called learning-to-rank and texture analysis methods and produced competitive results when compared to other studies in the literature.
Abstract: Nowadays, breast cancer is one of the most common cancers diagnosed in women. Mammography is the standard screening imaging technique for the early detection of breast cancer. However, thermal infrared images (thermographies) can be used to reveal lesions in dense breasts. In these images, the temperature of the regions that contain tumors is warmer than the normal tissue. To detect that difference in temperature between normal and cancerous regions, a dynamic thermography procedure uses thermal infrared cameras to generate infrared images at fixed time steps, obtaining a sequence of infrared images. In this paper, we propose a novel method to model the changes on temperatures in normal and abnormal breasts using a representation learning technique called learning-to-rank and texture analysis methods. The proposed method generates a compact representation for the infrared images of each sequence, which is then exploited to differentiate between normal and cancerous cases. Our method produced competitive (AUC = 0.989) results when compared to other studies in the literature.
Citations
More filters
Posted Content
TL;DR: In this paper, the authors presented a computer-aided diagnosis system based on convolutional neural networks as an alternative diagnosis methodology for breast cancer diagnosis with thermal images, which showed that lower false-positives and false-negatives classification rates are obtained when data pre-processing and data augmentation techniques are implemented in these thermal images.
Abstract: Micro Abstract: A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed from breast cancer. This study presents a computer-aided diagnosis system based on convolutional neural networks as an alternative diagnosis methodology for breast cancer diagnosis with thermal images. Experimental results showed that lower false-positives and false-negatives classification rates are obtained when data pre-processing and data augmentation techniques are implemented in these thermal images. Background: There are many types of breast cancer screening techniques such as, mammography, magnetic resonance imaging, ultrasound and blood sample tests, which require either, expensive devices or personal qualified. Currently, some countries still lack access to these main screening techniques due to economic, social or cultural issues. The objective of this study is to demonstrate that computer-aided diagnosis(CAD) systems based on convolutional neural networks (CNN) are faster, reliable and robust than other techniques. Methods: We performed a study of the influence of data pre-processing, data augmentation and database size versus a proposed set of CNN models. Furthermore, we developed a CNN hyper-parameters fine-tuning optimization algorithm using a tree parzen estimator. Results: Among the 57 patients database, our CNN models obtained a higher accuracy (92\%) and F1-score (92\%) that outperforms several state-of-the-art architectures such as ResNet50, SeResNet50 and Inception. Also, we demonstrated that a CNN model that implements data-augmentation techniques reach identical performance metrics in comparison with a CNN that uses a database up to 50\% bigger. Conclusion: This study highlights the benefits of data augmentation and CNNs in thermal breast images. Also, it measures the influence of the database size in the performance of CNNs.

64 citations

Journal ArticleDOI
TL;DR: Most research related to the implementation of deep neural networks for breast thermogram classification is covered and future research directions for developing representative datasets, feeding the segmented image, assigning a good kernel, and building a lightweight CNN model to improve CNN performance are proposed.
Abstract: Developing a breast cancer screening method is very important to facilitate early breast cancer detection and treatment. Building a screening method using medical imaging modality that does not cause body tissue damage (non-invasive) and does not involve physical touch is challenging. Thermography, a non-invasive and non-contact cancer screening method, can detect tumors at an early stage even under precancerous conditions by observing temperature distribution in both breasts. The thermograms obtained on thermography can be interpreted using deep learning models such as convolutional neural networks (CNNs). CNNs can automatically classify breast thermograms into categories such as normal and abnormal. Despite their demostrated utility, CNNs have not been widely used in breast thermogram classification. In this study, we aimed to summarize the current work and progress in breast cancer detection based on thermography and CNNs. We first discuss of breast thermography potential in early breast cancer detection, providing an overview of the availability of breast thermal datasets together with publicly accessible. We also discuss characteristics of breast thermograms and the differences between healthy and cancerous thermographic patterns. Breast thermogram classification using a CNN model is described step by step including a simulation example illustrating feature learning. We cover most research related to the implementation of deep neural networks for breast thermogram classification and propose future research directions for developing representative datasets, feeding the segmented image, assigning a good kernel, and building a lightweight CNN model to improve CNN performance.

61 citations


Cites methods from "Breast Cancer Detection in Thermal ..."

  • ...A study [120] applied a multilayer perceptron DNNmodel to classify breast thermogram in four classes....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that a CAD system that implements data-augmentation techniques reach identical performance metrics in comparison with a system that uses a bigger database but without data-AUgmentation, and the influence of data pre-processing, data augmentation and database size on several CAD models is studied.
Abstract: A recent study from GLOBOCAN disclosed that during 2018 two million women worldwide had been diagnosed with breast cancer. Currently, mammography, magnetic resonance imaging, ultrasound, and biopsi...

51 citations

Journal ArticleDOI
TL;DR: This paper reviews systematically the related works employing thermography with AI highlighting their contributions and drawbacks and proposing open issues for research.
Abstract: Breast cancer plays a significant role in affecting female mortality. Researchers are actively seeking to develop early detection methods of breast cancer. Several technologies contributed to the reduction in mortality rate from this disease, but early detection contributes most to preventing disease spread, breast amputation and death. Thermography is a promising technology for early diagnosis where thermal cameras employed are of high resolution and sensitivity. The combination of Artificial Intelligence (AI) with thermal images is an effective tool to detect early stage breast cancer and is foreseen to provide impressive predictability levels. This paper reviews systematically the related works employing thermography with AI highlighting their contributions and drawbacks and proposing open issues for research. Several different types of Artificial Neural Networks (ANNs) and deep learning models were used in the literature to process thermographic images of breast cancer, such as Radial Basis Function Network (RBFN), K-Nearest Neighbors (KNN), Probability Neural Network (PNN), Support Vector Machine (SVM), ResNet50, SeResNet50, V Net, Bayes Net, Convolutional Neural Networks (CNN), Convolutional and DeConvolutional Neural Networks (C-DCNN), VGG-16, Hybrid (ResNet-50 and V-Net), ResNet101, DenseNet and InceptionV3. Previous studies were found limited to varying the numbers of thermal images used mostly from DMR-IR database. In addition, analysis of the literature indicate that several factors do affect the performance of the Neural Network used, such as Database, optimization method, Network model and extracted features. However, due to small sample size used, most of the studies achieved a classification accuracy of 80% to 100%.

37 citations


Cites methods from "Breast Cancer Detection in Thermal ..."

  • ...In [42], researcher modeled the changes on temperatures in normal and abnormal breasts using a representation learning technique called learning-to-rank and texture analysis methods with multilayer perceptron (MLP) classifier....

    [...]

Journal ArticleDOI
15 Dec 2020-PLOS ONE
TL;DR: This work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images, and demonstrates that OGA- ELM is an efficient method for CO VID-19 detecting using chest X-Ray images.
Abstract: The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.

36 citations

References
More filters
Proceedings ArticleDOI
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.

31,952 citations


"Breast Cancer Detection in Thermal ..." refers methods in this paper

  • ...Histogram of oriented gradients (HOG): The HOG method is considered as one of the most powerful texture analysis methods because it produces distinctive descriptors in the case of illumination changes and cluttered background [39]....

    [...]

Journal ArticleDOI
01 Nov 1973
TL;DR: These results indicate that the easily computable textural features based on gray-tone spatial dependancies probably have a general applicability for a wide variety of image-classification applications.
Abstract: Texture is one of the important characteristics used in identifying objects or regions of interest in an image, whether the image be a photomicrograph, an aerial photograph, or a satellite image. This paper describes some easily computable textural features based on gray-tone spatial dependancies, and illustrates their application in category-identification tasks of three different kinds of image data: photomicrographs of five kinds of sandstones, 1:20 000 panchromatic aerial photographs of eight land-use categories, and Earth Resources Technology Satellite (ERTS) multispecial imagery containing seven land-use categories. We use two kinds of decision rules: one for which the decision regions are convex polyhedra (a piecewise linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89 percent for the photomicrographs, 82 percent for the aerial photographic imagery, and 83 percent for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

20,442 citations

Journal ArticleDOI
TL;DR: The purpose of this article is to serve as an introduction to ROC graphs and as a guide for using them in research.

17,017 citations

Journal ArticleDOI
TL;DR: A generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis.
Abstract: Presents a theoretically very simple, yet efficient, multiresolution approach to gray-scale and rotation invariant texture classification based on local binary patterns and nonparametric discrimination of sample and prototype distributions. The method is based on recognizing that certain local binary patterns, termed "uniform," are fundamental properties of local image texture and their occurrence histogram is proven to be a very powerful texture feature. We derive a generalized gray-scale and rotation invariant operator presentation that allows for detecting the "uniform" patterns for any quantization of the angular space and for any spatial resolution and presents a method for combining multiple operators for multiresolution analysis. The proposed approach is very robust in terms of gray-scale variations since the operator is, by definition, invariant against any monotonic transformation of the gray scale. Another advantage is computational simplicity as the operator can be realized with a few operations in a small neighborhood and a lookup table. Experimental results demonstrate that good discrimination can be achieved with the occurrence statistics of simple rotation invariant local binary patterns.

14,245 citations

Journal ArticleDOI
TL;DR: This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year, to survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks.

8,730 citations