scispace - formally typeset
Search or ask a question
Journal Article

BRIEF COMMUNICATION ARISING: Gut hormone PYY3-36 physiologically inhibits food intake

TL;DR: The authors showed that post-prandial elevation of PYY3-36 may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.
Abstract: Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY3-36 (PYY3-36), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY3-36 in rats inhibits food intake and reduces weight gain. PYY3-36 also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY3-36 increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY3-36 inhibits food intake. PYY3-36 also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY3-36 significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY3-36 may act through the arcuate nucleus Y2R to inhibit feeding in a gut–hypothalamic pathway.
Citations
More filters
Journal ArticleDOI
TL;DR: This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism.

3,040 citations

Journal ArticleDOI
21 Sep 2006-Nature
TL;DR: This new information provides a biological context within which to consider the global obesity epidemic and identifies numerous potential avenues for therapeutic intervention and future research.
Abstract: The capacity to adjust food intake in response to changing energy requirements is essential for survival. Recent progress has provided an insight into the molecular, cellular and behavioural mechanisms that link changes of body fat stores to adaptive adjustments of feeding behaviour. The physiological importance of this homeostatic control system is highlighted by the severe obesity that results from dysfunction of any of several of its key components. This new information provides a biological context within which to consider the global obesity epidemic and identifies numerous potential avenues for therapeutic intervention and future research.

2,263 citations

Journal ArticleDOI
TL;DR: It is found that obese subjects were not resistant to the anorectic effects of PYY, and endogenous PYY levels were low in obese subjects, suggesting that PYY deficiency may contribute to the pathogenesis of obesity.
Abstract: Background: The gut hormone fragment peptide YY3-36 (PYY) reduces appetite and food intake when infused into subjects of normal weight. In common with the adipocyte hormone leptin, PYY reduces food intake by modulating appetite circuits in the hypothalamus. However, in obesity there is a marked resistance to the action of leptin, which greatly limits its therapeutic effectiveness. We investigated whether obese subjects were also resistant to the anorectic effects of PYY.Methods: We compared the effects of PYY infusion on appetite and food intake in 12 obese and 12 lean subjects in a double-blind, placebo-controlled, crossover study. The plasma levels of PYY, ghrelin, leptin, and insulin were also determined.Results: Caloric intake during a buffet lunch offered two hours after the infusion of PYY was decreased by 30 percent in the obese subjects (P<0.001) and 31 percent in the lean subjects (P<0.001). PYY infusion also caused a significant decrease in the cumulative 24-hour caloric intake in both obese and lean subjects. PYY infusion reduced plasma levels of the appetite-stimulatory hormone ghrelin. Endogenous fasting and postprandial levels of PYY were significantly lower in obese subjects (the mean [+/-SE] fasting PYY levels were 10.2+/-0.7 pmol per liter in the obese group and 16.9+/-0.8 pmol per liter in the lean group, P<0.001). Furthermore, the fasting PYY levels correlated negatively with the body-mass index (r=-0.84, P<0.001).Conclusions: We found that obese subjects were not resistant to the anorectic effects of PYY. Endogenous PYY levels were low in the obese subjects, suggesting that PYY deficiency may contribute to the pathogenesis of obesity.

1,614 citations

Journal ArticleDOI
20 Feb 2003-Neuron
TL;DR: Using electrophysiological recordings, ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH), thus representing a novel regulatory circuit controlling energy homeostasis.

1,578 citations

Journal ArticleDOI
TL;DR: The elucidation of key regulators of energy balance and insulin signaling have revolutionized understanding of fat and sugar metabolism and their intimate link, and the three 'lipid-sensing' peroxisome proliferator–activated receptors exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis.
Abstract: Obesity and the related disorders of dyslipidemia and diabetes (components of syndrome X) have become global health epidemics. Over the past decade, the elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three 'lipid-sensing' peroxisome proliferator-activated receptors (PPAR-alpha, PPAR-gamma and PPAR-delta) exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bona fide therapeutic targets. With molecular underpinnings now in place, new pharmacologic approaches to metabolic disease and new questions are emerging.

1,487 citations

References
More filters
Book
31 Jul 2001
TL;DR: The 3rd edition of this atlas is now in more practical 14"x11" format for convenient lab use and includes a CD of all plates and diagrams, as well as Adobe Illustrator files of the diagrams, and a variety of additional useful material.
Abstract: "The Mouse Brain in Stereotaxic Coordinates" is the most widely used and cited atlas of the mouse brain in print. It provides researchers and students with both accurate stereotaxic coordinates for laboratory use, and detailed delineations and indexing of structures for reference. The accompanying DVD provides drawings of brains structures that can be used as templates for making figures for publication. The 3rd edition is both a major revision and an expansion of previous editions. Delineations and photographs in the horizontal plane of section now complement the coronal and sagittal series, and all the tissue sections are now shown in high resolution digital color photography. The photographs of the sections and the intermediate sections are also provided on the accompanying DVD in high-resolution JP 2000 format. The delineations of structures have been revised, and naming conventions made consistent with Paxinos and Watson's "Rat Brain in Stereotaxic Coordinates, 6th Edition". The 3rd edition of this atlas is now in more practical 14"x11" format for convenient lab use. This edition is in full color throughout. It includes a CD of all plates and diagrams, as well as Adobe Illustrator files of the diagrams, and a variety of additional useful material. Coronal and sagittal diagrams are completely reworked and updated. Rhombomeric borders are included in sagittal figures, for the first time in mammals. Microscopic plates are scanned with a new method in much higher quality.

15,681 citations

Journal ArticleDOI
06 Apr 2000-Nature
TL;DR: A model is described that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.
Abstract: New information regarding neuronal circuits that control food intake and their hormonal regulation has extended our understanding of energy homeostasis, the process whereby energy intake is matched to energy expenditure over time. The profound obesity that results in rodents (and in the rare human case as well) from mutation of key signalling molecules involved in this regulatory system highlights its importance to human health. Although each new signalling pathway discovered in the hypothalamus is a potential target for drug development in the treatment of obesity, the growing number of such signalling molecules indicates that food intake is controlled by a highly complex process. To better understand how energy homeostasis can be achieved, we describe a model that delineates the roles of individual hormonal and neuropeptide signalling pathways in the control of food intake and the means by which obesity can arise from inherited or acquired defects in their function.

6,178 citations

Journal ArticleDOI
TL;DR: This review summarizes the role of SCFAs in host energy metabolism, starting from the production by the gut microbiota to the uptake by the host and ending with the effects on host metabolism.

3,040 citations

Journal ArticleDOI
21 Sep 2006-Nature
TL;DR: This new information provides a biological context within which to consider the global obesity epidemic and identifies numerous potential avenues for therapeutic intervention and future research.
Abstract: The capacity to adjust food intake in response to changing energy requirements is essential for survival. Recent progress has provided an insight into the molecular, cellular and behavioural mechanisms that link changes of body fat stores to adaptive adjustments of feeding behaviour. The physiological importance of this homeostatic control system is highlighted by the severe obesity that results from dysfunction of any of several of its key components. This new information provides a biological context within which to consider the global obesity epidemic and identifies numerous potential avenues for therapeutic intervention and future research.

2,263 citations

Journal ArticleDOI
24 May 2001-Nature
TL;DR: An integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus is proposed and it is shown that melanocortin peptides have an autoinhibitory effect on this circuit.
Abstract: The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (gamma-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.

2,193 citations