scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Broad and strong memory CD4 + and CD8 + T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19.

TL;DR: The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.
Abstract: The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide–MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design. Questions have arisen as to whether patients with severe COVID-19 disease can generate a T cell response against SARS-CoV-2. Tao Dong and colleagues report that convalescent patients with COVID-19 harbor functional memory CD4+ and CD8+ T cells that recognize multiple epitopes that span the viral proteome. CD4+ T cells predominated the memory response in patients with severe disease, whereas higher proportions of CD8+ T cells were found in patients with mild disease.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
18 Feb 2021-Cell
TL;DR: In this article, a picture has begun to emerge that reveals that CD4+ T cells, CD8+ Tcells, and neutralizing antibodies all contribute to control SARS-CoV-2 in both non-hospitalized and hospitalized cases of COVID-19.

1,092 citations

Journal ArticleDOI
TL;DR: The specific objectives of this report were to assess the safety and humoral and cellular immunogenicity of a single-dose and two-dose schedule in adults older than 55 years, and safety, as measured by the occurrence of serious adverse events.

986 citations

Journal ArticleDOI
02 Oct 2020-Science
TL;DR: A range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, H coV-229E, H CoV-NL63, and HCov-HKU1 are demonstrated.
Abstract: Many unknowns exist about human immune responses to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. SARS-CoV-2-reactive CD4+ T cells have been reported in unexposed individuals, suggesting preexisting cross-reactive T cell memory in 20 to 50% of people. However, the source of those T cells has been speculative. Using human blood samples derived before the SARS-CoV-2 virus was discovered in 2019, we mapped 142 T cell epitopes across the SARS-CoV-2 genome to facilitate precise interrogation of the SARS-CoV-2-specific CD4+ T cell repertoire. We demonstrate a range of preexisting memory CD4+ T cells that are cross-reactive with comparable affinity to SARS-CoV-2 and the common cold coronaviruses human coronavirus (HCoV)-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Thus, variegated T cell memory to coronaviruses that cause the common cold may underlie at least some of the extensive heterogeneity observed in coronavirus disease 2019 (COVID-19) disease.

942 citations

Journal ArticleDOI
29 Apr 2021-Cell
TL;DR: In this article, the authors show that SARS-CoV-2/COVID-19 variants B.1.7 (UK), B.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies.

754 citations

Journal ArticleDOI
TL;DR: Early reports of the T cell responses observed in patients with COVID-19 are summarized, emphasizing how different immune response characteristics in different patients may reflect a spectrum of disease phenotypes.
Abstract: The role of T cells in the resolution or exacerbation of COVID-19, as well as their potential to provide long-term protection from reinfection with SARS-CoV-2, remains debated. Nevertheless, recent studies have highlighted various aspects of T cell responses to SARS-CoV-2 infection that are starting to enable some general concepts to emerge.

653 citations

References
More filters
Journal ArticleDOI
TL;DR: The epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of patients with laboratory-confirmed 2019-nCoV infection in Wuhan, China, were reported.

36,578 citations

Journal ArticleDOI
TL;DR: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness, and patients often presented without fever, and many did not have abnormal radiologic findings.
Abstract: Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of...

22,622 citations

Journal ArticleDOI
TL;DR: O surto do novo coronavírus (COVID-19) em Wuhan, China, iniciado em dezembro de 2019, evoluiu para se tornar uma pandemia global A.

6,850 citations

Journal ArticleDOI
25 Jun 2020-Cell
TL;DR: Using HLA class I and II predicted peptide ‘megapools’, circulating SARS-CoV-2−specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively, suggesting cross-reactive T cell recognition between circulating ‘common cold’ coronaviruses and SARS.

3,043 citations

Book ChapterDOI
TL;DR: A brief introduction to coronaviruses is provided discussing their replication and pathogenicity, and current prevention and treatment strategies, and the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratories Syndrome Cor onavirus
Abstract: Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).

2,846 citations

Related Papers (5)