scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Brown adipose tissue as a secretory organ

01 Jan 2017-Nature Reviews Endocrinology (Nature Research)-Vol. 13, Iss: 1, pp 26-35
TL;DR: The current understanding of the regulatory molecules that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation are discussed.
Abstract: Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.
Citations
More filters
Journal ArticleDOI
TL;DR: The adipose tissue is a promising therapeutic target in cardiovascular therapeutics and might mediate the cardiovascular benefit observed with different pharmacological, lifestyle and other types of interventions.
Abstract: Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.

255 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported that individuals with BAT had lower prevalences of cardiometabolic diseases, and the presence of BAT was independently correlated with lower odds of type 2 diabetes, dyslipidemia, coronary artery disease, cerebrovascular disease, congestive heart failure and hypertension.
Abstract: White fat stores excess energy, whereas brown and beige fat are thermogenic and dissipate energy as heat. Thermogenic adipose tissues markedly improve glucose and lipid homeostasis in mouse models, although the extent to which brown adipose tissue (BAT) influences metabolic and cardiovascular disease in humans is unclear1,2. Here we retrospectively categorized 134,529 18F-fluorodeoxyglucose positron emission tomography-computed tomography scans from 52,487 patients, by presence or absence of BAT, and used propensity score matching to assemble a study cohort. Scans in the study population were initially conducted for indications related to cancer diagnosis, treatment or surveillance, without previous stimulation. We report that individuals with BAT had lower prevalences of cardiometabolic diseases, and the presence of BAT was independently correlated with lower odds of type 2 diabetes, dyslipidemia, coronary artery disease, cerebrovascular disease, congestive heart failure and hypertension. These findings were supported by improved blood glucose, triglyceride and high-density lipoprotein values. The beneficial effects of BAT were more pronounced in individuals with overweight or obesity, indicating that BAT might play a role in mitigating the deleterious effects of obesity. Taken together, our findings highlight a potential role for BAT in promoting cardiometabolic health.

244 citations

Journal ArticleDOI
TL;DR: The focus of this review is the impact of aging on adipose tissue distribution and function and how these effects influence the elaboration of pro and anti-inflammatory adipokines.
Abstract: During the last 40 years, there has been a world-wide increase in both the prevalence of obesity and an increase in the number of persons over the age of 60 due to a decline in deaths from infectious disease and the nutrition transition in low and middle income nations. While the increase in the elderly population indicates improvements in global public health, this population may experience a diminished quality of life due to the negative impacts of obesity on age-associated inflammation. Aging alters adipose tissue composition and function resulting in insulin resistance and ectopic lipid storage. A reduction in brown adipose tissue activity, declining sex hormones levels, and abdominal adipose tissue expansion occur with advancing years through the redistribution of lipids from the subcutaneous to the visceral fat compartment. These changes in adipose tissue function and distribution influence the secretion of adipose tissue derived hormones, or adipokines, that promote a chronic state of low-grade systemic inflammation. Ultimately, obesity accelerates aging by enhancing inflammation and increasing the risk of age-associated diseases. The focus of this review is the impact of aging on adipose tissue distribution and function and how these effects influence the elaboration of pro and anti-inflammatory adipokines.

163 citations


Cites background from "Brown adipose tissue as a secretory..."

  • ...Finally, age may affect brown adipose tissue adipokines produced by this tissue that are known to regulate precursor cell adipocyte commitment, differentiation, and factors that promote thermogenesis (35)....

    [...]

Journal ArticleDOI
TL;DR: It can be stated that in an era of a global obesity pandemic, adipokines may gain more and more importance as regards their use in the diagnostic evaluation and treatment of diseases.
Abstract: The World Health Organization (WHO) has recognized obesity as one of the top ten threats to human health. It is estimated that the number of obese and overweight people worldwide exceeds the number of those who are undernourished. Obesity is not only a state of abnormally increased adipose tissue in the body, but also of increased release of biologically active adipokines. Adipokines released into the circulating blood, due to their specific receptors on the surface of target cells, act as classic hormones affecting the metabolism of tissues and organs. What is more, adipokines and cytokines may decrease the insulin sensitivity of tissues and induce inflammation and development of chronic complications. Certainly, it can be stated that in an era of a global obesity pandemic, adipokines may gain more and more importance as regards their use in the diagnostic evaluation and treatment of diseases. An extensive search for materials on the role of white, brown and perivascular fatty tissue and obesity-related metabolic and chronic complications was conducted online using PubMed, the Cochrane database and Embase.

149 citations

Journal ArticleDOI
TL;DR: The latest research progress on the roles of circulating miRNAs in metabolic organ crosstalk is reviewed and their potential as biomarkers or therapeutics for obesity and related disorders is discussed.
Abstract: Obesity is a complex condition that is characterized by excessive fat accumulation, which can lead to the development of metabolic disorders, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease and cardiovascular diseases. Evidence is accumulating that circulating microRNAs (miRNAs) act as a new class of endocrine factor. These miRNAs are released by many types of tissue, including adipose tissues. miRNAs might serve as endocrine and paracrine messengers that facilitate communication between donor cells and tissues with receptor cells or target tissues, thereby potentially having important roles in metabolic organ crosstalk. Moreover, many miRNAs are closely associated with the differentiation of adipocytes and are dysregulated in obesity. As such, circulating miRNAs are attractive potential biomarkers and hold promise for the development of miRNA-based therapeutics (such as miRNA mimetics, anti-miRNA oligonucleotides and exosomes loaded with miRNA) for obesity and related disorders. Here we review the latest research progress on the roles of circulating miRNAs in metabolic organ crosstalk. In addition, we discuss the clinical potential of circulating miRNAs as feasible biomarkers for the assessment of future risk of metabolic disorders and as therapeutic targets in obesity and related diseases. Circulating microRNAs act as a new class of endocrine factor that can facilitate crosstalk between metabolic organs. This Review highlights obesity-associated and/or adipose tissue-enriched microRNAs and discusses their potential as biomarkers or therapeutics for obesity and related disorders.

146 citations

References
More filters
Journal ArticleDOI
TL;DR: The development of brown adipose tissue with its characteristic protein, uncoupling protein-1 (UCP1), was probably determinative for the evolutionary success of mammals, as its thermogenesis enhances neonatal survival and allows for active life even in cold surroundings.
Abstract: Cannon, Barbara, and Jan Nedergaard. Brown Adipose Tissue: Function and Physiological Significance. Physiol Rev 84: 277–359, 2004; 10.1152/physrev.00015.2003.—The function of brown adipose tissue i...

5,470 citations

Journal ArticleDOI
TL;DR: The evolving concept of insulin resistance and T2D as having immunological components and an improving picture of how inflammation modulates metabolism provide new opportunities for using antiinflammatory strategies to correct the metabolic consequences of excess adiposity.
Abstract: Over a hundred years ago, high doses of salicylates were shown to lower glucose levels in diabetic patients. This should have been an important clue to link inflammation to the pathogenesis of type 2 diabetes (T2D), but the antihyperglycemic and antiinflammatory effects of salicylates were not connected to the pathogenesis of insulin resistance until recently. Together with the discovery of an important role for tissue macrophages, these new findings are helping to reshape thinking about how obesity increases the risk for developing T2D and the metabolic syndrome. The evolving concept of insulin resistance and T2D as having immunological components and an improving picture of how inflammation modulates metabolism provide new opportunities for using antiinflammatory strategies to correct the metabolic consequences of excess adiposity.

4,046 citations

Journal ArticleDOI
TL;DR: These findings document the presence of substantial amounts of metabolically active brown adipose tissue in healthy adult humans.
Abstract: Using positron-emission tomography (PET), we found that cold-induced glucose uptake was increased by a factor of 15 in paracervical and supraclavicular adipose tissue in five healthy subjects. We obtained biopsy specimens of this tissue from the first three consecutive subjects and documented messenger RNA (mRNA) and protein levels of the brown-adipocyte marker, uncoupling protein 1 (UCP1). Together with morphologic assessment, which showed numerous multilocular, intracellular lipid droplets, and with the results of biochemical analysis, these findings document the presence of substantial amounts of metabolically active brown adipose tissue in healthy adult humans.

2,790 citations

Journal ArticleDOI
20 Jul 2012-Cell
TL;DR: Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin, providing evidence that previously identified brown fat deposits in adult humans are composed of beige adipocytes.

2,767 citations

Journal ArticleDOI
TL;DR: It is suggested that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.
Abstract: Adipocytes secrete a variety of bioactive molecules that affect the insulin sensitivity of other tissues. We now show that the abundance of monocyte chemoattractant protein-1 (MCP-1) mRNA in adipose tissue and the plasma concentration of MCP-1 were increased both in genetically obese diabetic (db/db) mice and in WT mice with obesity induced by a high-fat diet. Mice engineered to express an MCP-1 transgene in adipose tissue under the control of the aP2 gene promoter exhibited insulin resistance, macrophage infiltration into adipose tissue, and increased hepatic triglyceride content. Furthermore, insulin resistance, hepatic steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet were reduced extensively in MCP-1 homozygous KO mice compared with WT animals. Finally, acute expression of a dominant-negative mutant of MCP-1 ameliorated insulin resistance in db/db mice and in WT mice fed a high-fat diet. These findings suggest that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.

2,451 citations