scispace - formally typeset
Search or ask a question
Dissertation

Building an Intelligent Knowledgebase of Brachiopod Paleontology

31 Aug 2013-
TL;DR: This research builds an intelligent system based on brachiopod fossil images and their descriptions published in Treatise on Invertebrate Paleontology to compare fossil images directly, without referring to textual information.
Abstract: Science advances not only because of new discoveries, but also due to revolutionary ideas drawn from accumulated data. The quality of studies in paleontology, in particular, depends on accessibility of fossil data. This research builds an intelligent system based on brachiopod fossil images and their descriptions published in Treatise on Invertebrate Paleontology. The project is still on going and some significant developments will be discussed here. This thesis has two major parts. The first part describes the digitization, organization and integration of information extracted from the Treatise. The Treatise is in PDF format and it is non-trivial to convert large volumes into a structured, easily accessible digital library. Three important topics will be discussed: (1) how to extract data entries from the text, and save them in a structured manner; (2) how to crop individual specimen images from figures automatically, and associate each image with text entries; (3) how to build a search engine to perform both keyword search and natural language search. The search engine already has a web interface and many useful tasks can be done with ease. Verbal descriptions are second-hand information of fossil images and thus have limitations. The second part of the thesis develops an algorithm to compare fossil images directly, without referring to textual information. After similarities between fossil images are calculated, we can use the results in image search, fossil classification, and so on. The algorithm is based on deformable templates, and utilizes expectation propagation to find the optimal deformation. Specifically, I superimpose a “warp” on each image. Each node of the warp encapsulates a vector of local texture features, and comparing two images involves two steps: (1) deform the warp to the optimal configuration, so the energy function is minimized; and (2) based on the optimal configuration, compute the distance of two images. Experiment results confirmed that the method is reasonable and robust.
References
More filters
Journal ArticleDOI
TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Abstract: A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.

18,095 citations

Book
11 Feb 1984
TL;DR: This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.
Abstract: Image Processing and Mathematical Morphology-Frank Y. Shih 2009-03-23 In the development of digital multimedia, the importance and impact of image processing and mathematical morphology are well documented in areas ranging from automated vision detection and inspection to object recognition, image analysis and pattern recognition. Those working in these ever-evolving fields require a solid grasp of basic fundamentals, theory, and related applications—and few books can provide the unique tools for learning contained in this text. Image Processing and Mathematical Morphology: Fundamentals and Applications is a comprehensive, wide-ranging overview of morphological mechanisms and techniques and their relation to image processing. More than merely a tutorial on vital technical information, the book places this knowledge into a theoretical framework. This helps readers analyze key principles and architectures and then use the author’s novel ideas on implementation of advanced algorithms to formulate a practical and detailed plan to develop and foster their own ideas. The book: Presents the history and state-of-the-art techniques related to image morphological processing, with numerous practical examples Gives readers a clear tutorial on complex technology and other tools that rely on their intuition for a clear understanding of the subject Includes an updated bibliography and useful graphs and illustrations Examines several new algorithms in great detail so that readers can adapt them to derive their own solution approaches This invaluable reference helps readers assess and simplify problems and their essential requirements and complexities, giving them all the necessary data and methodology to master current theoretical developments and applications, as well as create new ones.

9,566 citations

Book
01 Dec 2003
TL;DR: 1. Fundamentals of Image Processing, 2. Intensity Transformations and Spatial Filtering, and 3. Frequency Domain Processing.
Abstract: 1. Introduction. 2. Fundamentals. 3. Intensity Transformations and Spatial Filtering. 4. Frequency Domain Processing. 5. Image Restoration. 6. Color Image Processing. 7. Wavelets. 8. Image Compression. 9. Morphological Image Processing. 10. Image Segmentation. 11. Representation and Description. 12. Object Recognition.

6,306 citations

Proceedings ArticleDOI
03 Jun 1991
TL;DR: An approach to the detection and identification of human faces is presented, and a working, near-real-time face recognition system which tracks a subject's head and then recognizes the person by comparing characteristics of the face to those of known individuals is described.
Abstract: An approach to the detection and identification of human faces is presented, and a working, near-real-time face recognition system which tracks a subject's head and then recognizes the person by comparing characteristics of the face to those of known individuals is described. This approach treats face recognition as a two-dimensional recognition problem, taking advantage of the fact that faces are normally upright and thus may be described by a small set of 2-D characteristic views. Face images are projected onto a feature space ('face space') that best encodes the variation among known face images. The face space is defined by the 'eigenfaces', which are the eigenvectors of the set of faces; they do not necessarily correspond to isolated features such as eyes, ears, and noses. The framework provides the ability to learn to recognize new faces in an unsupervised manner. >

5,489 citations

Journal ArticleDOI
TL;DR: In this article, a method for the representation of (pictures of) faces is presented, which results in the characterization of a face, to within an error bound, by a relatively low-dimensional vector.
Abstract: A method is presented for the representation of (pictures of) faces. Within a specified framework the representation is ideal. This results in the characterization of a face, to within an error bound, by a relatively low-dimensional vector. The method is illustrated in detail by the use of an ensemble of pictures taken for this purpose.

2,089 citations