scispace - formally typeset
Search or ask a question
Journal ArticleDOI

C ONDENSATION —Conditional Density Propagation forVisual Tracking

01 Aug 1998-International Journal of Computer Vision (Kluwer Academic Publishers)-Vol. 29, Iss: 1, pp 5-28
TL;DR: The Condensation algorithm uses “factored sampling”, previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set.
Abstract: The problem of tracking curves in dense visual clutter is challenging. Kalman filtering is inadequate because it is based on Gaussian densities which, being unimo dal, cannot represent simultaneous alternative hypotheses. The Condensation algorithm uses “factored sampling”, previously applied to the interpretation of static images, in which the probability distribution of possible interpretations is represented by a randomly generated set. Condensation uses learned dynamical models, together with visual observations, to propagate the random set over time. The result is highly robust tracking of agile motion. Notwithstanding the use of stochastic methods, the algorithm runs in near real-time.

Content maybe subject to copyright    Report

Citations
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations


Cites methods from "C ONDENSATION —Conditional Density ..."

  • ...This is the approach used in the condensation algorithm (which stands for “conditional density propagation”) used for visual tracking (Isard and Blake 1998)....

    [...]

Journal ArticleDOI
TL;DR: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends to discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.
Abstract: The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

5,318 citations


Cites background or methods from "C ONDENSATION —Conditional Density ..."

  • ...Kalman .ltering [Isard and Blake 1998] S × v Gradient mag....

    [...]

  • ...The weights tt de.ne the importance of a sample, that is, its observation frequency [Isard and Blake 1998]....

    [...]

  • ...Silhouette Tracking Contour evolution State space models [Isard and Blake 1998], Variational methods [Bertalmio et al. 2000], Heuristic methods [Ronfard 1994]....

    [...]

  • ...For example, these methods have extensively been used for tracking contours [Isard and Blake 1998], activity recognition [Vaswani et al....

    [...]

Journal ArticleDOI
TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Abstract: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

4,996 citations


Cites methods from "C ONDENSATION —Conditional Density ..."

  • ...Particle filtering was first introduced, in vision, as the Condensation algorithm by Isard and Blake [ 40 ]....

    [...]

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations


Cites background or methods from "C ONDENSATION —Conditional Density ..."

  • ...One popular approach, called particle filtering (Isard and Blake 1998), was originally developed for tracking the outlines of people and hands, as described in §5....

    [...]

  • ...1: Some popular image segmentation techniques: (a) active contours (Isard and Blake 1998); (b) level sets (Cremers et al....

    [...]

  • ...6: Probability density propagation (Isard and Blake 1998)....

    [...]

  • ...8: Head tracking using CONDENSATION: (Isard and Blake 1998): (a) sample set representation of head estimate distribution; (b) multiple measurements at each control vertex location; (c) multi-hypothesis tracking over time....

    [...]

  • ...7: Factored sampling using particle filter in the CONDENSATION algorithm (Isard and Blake 1998): (a) each density distribution is represented using a superposition of weighted particles; (b) the drift-diffusion-measurement cycle implemented using random sampling, perturbation, and re-weighting stages....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: New results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form that provide the basis for an automatic system that can solve the Location Determination Problem under difficult viewing.
Abstract: A new paradigm, Random Sample Consensus (RANSAC), for fitting a model to experimental data is introduced. RANSAC is capable of interpreting/smoothing data containing a significant percentage of gross errors, and is thus ideally suited for applications in automated image analysis where interpretation is based on the data provided by error-prone feature detectors. A major portion of this paper describes the application of RANSAC to the Location Determination Problem (LDP): Given an image depicting a set of landmarks with known locations, determine that point in space from which the image was obtained. In response to a RANSAC requirement, new results are derived on the minimum number of landmarks needed to obtain a solution, and algorithms are presented for computing these minimum-landmark solutions in closed form. These results provide the basis for an automatic system that can solve the LDP under difficult viewing

23,396 citations


"C ONDENSATION —Conditional Density ..." refers background in this paper

  • ...The “RANSAC” algorithm (Fischler and Bolles, 1981) deals probabilistically with multiple observations but the observations have to be discrete, and there is no mechanism for temporal propagation....

    [...]

01 Jan 1994
TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Abstract: Note: Includes bibliographical references, 3 appendixes and 2 indexes.- Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08

19,881 citations


"C ONDENSATION —Conditional Density ..." refers methods in this paper

  • ...Otherwise, for low-dimensional parameterisations as in this paper, standard, direct methods can be used for Gaussians2 (Press et al., 1988)....

    [...]

  • ...Otherwise, for low-dimensional parameterisations as in this paper, standard, direct methods can be used for Gaussians 2 (Press et al., 1988)....

    [...]

Journal ArticleDOI
TL;DR: The analogy between images and statistical mechanics systems is made and the analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations, creating a highly parallel ``relaxation'' algorithm for MAP estimation.
Abstract: We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov random field (MRF) equivalence, this assignment also determines an MRF image model. The energy function is a more convenient and natural mechanism for embodying picture attributes than are the local characteristics of the MRF. For a range of degradation mechanisms, including blurring, nonlinear deformations, and multiplicative or additive noise, the posterior distribution is an MRF with a structure akin to the image model. By the analogy, the posterior distribution defines another (imaginary) physical system. Gradual temperature reduction in the physical system isolates low energy states (``annealing''), or what is the same thing, the most probable states under the Gibbs distribution. The analogous operation under the posterior distribution yields the maximum a posteriori (MAP) estimate of the image given the degraded observations. The result is a highly parallel ``relaxation'' algorithm for MAP estimation. We establish convergence properties of the algorithm and we experiment with some simple pictures, for which good restorations are obtained at low signal-to-noise ratios.

18,761 citations


"C ONDENSATION —Conditional Density ..." refers methods in this paper

  • ...In cases wherep(z | x) is sufficiently complex thatp(x | z) cannot be evaluated simply in closed form, iterative sampling techniques can be used (Geman and Geman, 1984; Ripley and Sutherland, 1990; Grenander et al., 1991; Storvik, 1994)....

    [...]

Journal ArticleDOI
TL;DR: This work uses snakes for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest, and uses scale-space continuation to enlarge the capture region surrounding a feature.
Abstract: A snake is an energy-minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Scale-space continuation can be used to enlarge the capture region surrounding a feature. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and subjective contours; motion tracking; and stereo matching. We have used snakes successfully for interactive interpretation, in which user-imposed constraint forces guide the snake near features of interest.

18,095 citations


"C ONDENSATION —Conditional Density ..." refers background in this paper

  • ...One important facility is the modelling of curve segments which interact with images (Fischler and Elschlager, 1973; Yuille and Hallinan, 1992) or image sequences (Kass et al., 1987; Dickmanns, and Graefe, 1988)....

    [...]

Book
01 Jan 1993
TL;DR: This book presents a meta-modelling framework for speech recognition that automates the very labor-intensive and therefore time-heavy and therefore expensive and expensive process of manually modeling speech.
Abstract: 1. Fundamentals of Speech Recognition. 2. The Speech Signal: Production, Perception, and Acoustic-Phonetic Characterization. 3. Signal Processing and Analysis Methods for Speech Recognition. 4. Pattern Comparison Techniques. 5. Speech Recognition System Design and Implementation Issues. 6. Theory and Implementation of Hidden Markov Models. 7. Speech Recognition Based on Connected Word Models. 8. Large Vocabulary Continuous Speech Recognition. 9. Task-Oriented Applications of Automatic Speech Recognition.

8,442 citations


"C ONDENSATION —Conditional Density ..." refers background in this paper

  • ...Finally, it is striking that the density propagation equation (4) in the Condensation algorithm is a continuous form of the propagation rule of the “forward algorithm” for Hidden Markov Models (HMMs) (Rabiner and Bing-Hwang, 1993)....

    [...]

  • ...Finally, it is striking that the density propagation equation (4) in theCondensation algorithm is a continuous form of the propagation rule of the “forward algorithm” for Hidden Markov Models (HMMs) (Rabiner and Bing-Hwang, 1993)....

    [...]