scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cache in the air: exploiting content caching and delivery techniques for 5G systems

TL;DR: A novel edge caching scheme based on the concept of content-centric networking or information-centric networks is proposed and evaluated, using trace-driven simulations to evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks.
Abstract: The demand for rich multimedia services over mobile networks has been soaring at a tremendous pace over recent years. However, due to the centralized architecture of current cellular networks, the wireless link capacity as well as the bandwidth of the radio access networks and the backhaul network cannot practically cope with the explosive growth in mobile traffic. Recently, we have observed the emergence of promising mobile content caching and delivery techniques, by which popular contents are cached in the intermediate servers (or middleboxes, gateways, or routers) so that demands from users for the same content can be accommodated easily without duplicate transmissions from remote servers; hence, redundant traffic can be significantly eliminated. In this article, we first study techniques related to caching in current mobile networks, and discuss potential techniques for caching in 5G mobile networks, including evolved packet core network caching and radio access network caching. A novel edge caching scheme based on the concept of content-centric networking or information-centric networking is proposed. Using trace-driven simulations, we evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks. Furthermore, we conclude the article by exploring new relevant opportunities and challenges.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management is provided in this paper, where a set of issues, challenges, and future research directions for MEC are discussed.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized mobile cloud computing toward mobile edge computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also discuss a set of issues, challenges, and future research directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,992 citations

Posted Content
TL;DR: A comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management and recent standardization efforts on MEC are introduced.
Abstract: Driven by the visions of Internet of Things and 5G communications, recent years have seen a paradigm shift in mobile computing, from the centralized Mobile Cloud Computing towards Mobile Edge Computing (MEC). The main feature of MEC is to push mobile computing, network control and storage to the network edges (e.g., base stations and access points) so as to enable computation-intensive and latency-critical applications at the resource-limited mobile devices. MEC promises dramatic reduction in latency and mobile energy consumption, tackling the key challenges for materializing 5G vision. The promised gains of MEC have motivated extensive efforts in both academia and industry on developing the technology. A main thrust of MEC research is to seamlessly merge the two disciplines of wireless communications and mobile computing, resulting in a wide-range of new designs ranging from techniques for computation offloading to network architectures. This paper provides a comprehensive survey of the state-of-the-art MEC research with a focus on joint radio-and-computational resource management. We also present a research outlook consisting of a set of promising directions for MEC research, including MEC system deployment, cache-enabled MEC, mobility management for MEC, green MEC, as well as privacy-aware MEC. Advancements in these directions will facilitate the transformation of MEC from theory to practice. Finally, we introduce recent standardization efforts on MEC as well as some typical MEC application scenarios.

2,289 citations


Cites background from "Cache in the air: exploiting conten..."

  • ...or FemtoCaching was proposed in [155]–[158] to avoid frequent replication for the same contents by caching them at BSs....

    [...]

Proceedings ArticleDOI
21 Jun 2015
TL;DR: The definition of fog computing and similar concepts are discussed, representative application scenarios are introduced, and various aspects of issues the authors may encounter when designing and implementing fog computing systems are identified.
Abstract: Despite the increasing usage of cloud computing, there are still issues unsolved due to inherent problems of cloud computing such as unreliable latency, lack of mobility support and location-awareness. Fog computing can address those problems by providing elastic resources and services to end users at the edge of network, while cloud computing are more about providing resources distributed in the core network. This survey discusses the definition of fog computing and similar concepts, introduces representative application scenarios, and identifies various aspects of issues we may encounter when designing and implementing fog computing systems. It also highlights some opportunities and challenges, as direction of potential future work, in related techniques that need to be considered in the context of fog computing.

1,217 citations


Cites background from "Cache in the air: exploiting conten..."

  • ...It is also very interesting to redesign cache on fog node to exploit temporal locality and broader coverage to save network bandwidth and reduce delay, while there is existing work of cache on end device [57] and cache on edge router [51]....

    [...]

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review on the state-of-the-art research efforts on mobile edge networks, including definition, architecture, and advantages, and presents a comprehensive survey of issues on computing, caching, and communication techniques at the network edge.
Abstract: As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures, which bring network functions and contents to the network edge, are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks, including definition, architecture, and advantages. Next, a comprehensive survey of issues on computing, caching, and communication techniques at the network edge is presented. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks, such as cloud technology, SDN/NFV, and smart devices are discussed. Finally, open research challenges and future directions are presented as well.

782 citations


Cites background from "Cache in the air: exploiting conten..."

  • ...Moreover, deploying caching at the EPC is technically easier than at the RAN....

    [...]

  • ...The emergence of mobile edge caching and delivery techniques are promising solutions to cope with those challenges [26]....

    [...]

  • ...Currently the widely deployed places of caching is the evolved packet core (EPC) [26]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors proposed to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with mobile edge systems for optimizing mobile edge computing, caching and communication, and designed the "In-Edge AI" framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load.
Abstract: Recently, along with the rapid development of mobile communication technology, edge computing theory and techniques have been attracting more and more attention from global researchers and engineers, which can significantly bridge the capacity of cloud and requirement of devices by the network edges, and thus can accelerate content delivery and improve the quality of mobile services. In order to bring more intelligence to edge systems, compared to traditional optimization methodology, and driven by the current deep learning techniques, we propose to integrate the Deep Reinforcement Learning techniques and Federated Learning framework with mobile edge systems, for optimizing mobile edge computing, caching and communication. And thus, we design the "In-Edge AI" framework in order to intelligently utilize the collaboration among devices and edge nodes to exchange the learning parameters for a better training and inference of the models, and thus to carry out dynamic system-level optimization and application-level enhancement while reducing the unnecessary system communication load. "In-Edge AI" is evaluated and proved to have near-optimal performance but relatively low overhead of learning, while the system is cognitive and adaptive to mobile communication systems. Finally, we discuss several related challenges and opportunities for unveili

764 citations

References
More filters
Journal ArticleDOI
Klaus Doppler1, Mika Rinne1, Carl Wijting1, Cassio Ribeiro1, Klaus Hugl1 
TL;DR: Device-to-device (D2D) communication underlaying a 3GPP LTE-Advanced cellular network is studied as an enabler of local services with limited interference impact on the primary cellular network.
Abstract: In this article device-to-device (D2D) communication underlaying a 3GPP LTE-Advanced cellular network is studied as an enabler of local services with limited interference impact on the primary cellular network. The approach of the study is a tight integration of D2D communication into an LTE-Advanced network. In particular, we propose mechanisms for D2D communication session setup and management involving procedures in the LTE System Architecture Evolution. Moreover, we present numerical results based on system simulations in an interference limited local area scenario. Our results show that D2D communication can increase the total throughput observed in the cell area.

1,941 citations

Journal ArticleDOI
TL;DR: This work compares and discusses design choices and features of proposed ICN architectures, focusing on the following main components: named data objects, naming and security, API, routing and transport, and caching.
Abstract: The information-centric networking (ICN) concept is a significant common approach of several future Internet research activities. The approach leverages in-network caching, multiparty communication through replication, and interaction models decoupling senders and receivers. The goal is to provide a network infrastructure service that is better suited to today?s use (in particular. content distribution and mobility) and more resilient to disruptions and failures. The ICN approach is being explored by a number of research projects. We compare and discuss design choices and features of proposed ICN architectures, focusing on the following main components: named data objects, naming and security, API, routing and transport, and caching. We also discuss the advantages of the ICN approach in general.

1,679 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: The theoretical contribution of this paper lies in formalizing the distributed caching problem, showing that this problem is NP-hard, and presenting approximation algorithms that lie within a constant factor of the theoretical optimum.
Abstract: We suggest a novel approach to handle the ongoing explosive increase in the demand for video content in wireless/mobile devices. We envision femtocell-like base stations, which we call helpers, with weak backhaul links but large storage capacity. These helpers form a wireless distributed caching network that assists the macro base station by handling requests of popular files that have been cached. Due to the short distances between helpers and requesting devices, the transmission of cached files can be done very efficiently.

895 citations

Posted Content
TL;DR: In this paper, the authors propose a system where helpers with low-rate backhaul but high storage capacity cache popular video files, and analyze the optimum way of assigning files to the helpers in order to minimize the expected downloading time for files.
Abstract: Video on-demand streaming from Internet-based servers is becoming one of the most important services offered by wireless networks today. In order to improve the area spectral efficiency of video transmission in cellular systems, small cells heterogeneous architectures (e.g., femtocells, WiFi off-loading) are being proposed, such that video traffic to nomadic users can be handled by short-range links to the nearest small cell access points (referred to as "helpers"). As the helper deployment density increases, the backhaul capacity becomes the system bottleneck. In order to alleviate such bottleneck we propose a system where helpers with low-rate backhaul but high storage capacity cache popular video files. Files not available from helpers are transmitted by the cellular base station. We analyze the optimum way of assigning files to the helpers, in order to minimize the expected downloading time for files. We distinguish between the uncoded case (where only complete files are stored) and the coded case, where segments of Fountain-encoded versions of the video files are stored at helpers. We show that the uncoded optimum file assignment is NP-hard, and develop a greedy strategy that is provably within a factor 2 of the optimum. Further, for a special case we provide an efficient algorithm achieving a provably better approximation ratio of $1-(1-1/d)^d$, where $d$ is the maximum number of helpers a user can be connected to. We also show that the coded optimum cache assignment problem is convex that can be further reduced to a linear program. We present numerical results comparing the proposed schemes.

673 citations

Proceedings ArticleDOI
09 Dec 2013
TL;DR: The presented SoftCell is a scalable architecture that supports fine-grained policies for mobile devices in cellular core networks, using commodity switches and servers, and enables operators to realize high-level service policies that direct traffic through sequences of middleboxes based on subscriber attributes and applications.
Abstract: Cellular core networks suffer from inflexible and expensive equipment, as well as from complex control-plane protocols. To address these challenges, we present SoftCell, a scalable architecture that supports fine-grained policies for mobile devices in cellular core networks, using commodity switches and servers. SoftCell enables operators to realize high-level service policies that direct traffic through sequences of middleboxes based on subscriber attributes and applications. To minimize the size of the forwarding tables, SoftCell aggregates traffic along multiple dimensions---the service policy, the base station, and the mobile device---at different switches in the network. Since most traffic originates from mobile devices, SoftCell performs fine-grained packet classification at the access switches, next to the base stations, where software switches can easily handle the state and bandwidth requirements. SoftCell guarantees that packets belonging to the same connection traverse the same sequence of middleboxes in both directions, even in the presence of mobility. We demonstrate that SoftCell improves the scalability and flexibility of cellular core networks by analyzing real LTE workloads, performing micro-benchmarks on our prototype controller as well as large-scale simulations.

403 citations