scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures.

01 May 2017-Environmental Pollution (Environ Pollut)-Vol. 224, pp 622-630
TL;DR: Efficient measures to immobilize Cd in soil and reduce Cd uptake by rice are discussed (including agronomic practices, bioremediation and molecular biology techniques) to contribute to ensuring food safety, and reducing Cd risk on human beings.
About: This article is published in Environmental Pollution.The article was published on 2017-05-01. It has received 302 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of soil and plant indices related to trace element (TE) phytoavailability in real field conditions is presented, and discrepancies of lower-than-expected toxicity to plants are explored, mainly due to growth experiments that expose plants to TEs directly from TE-laden solutions or by studies that spike soils with TEs only days or weeks before planting.

558 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the bioremediation applications of combined contaminated soil with heavy metals and pesticides and proposed the future investigations required for this field, based on which the effectiveness evaluation methods of soil remediation are also reviewed.

190 citations

Journal ArticleDOI
TL;DR: Metal distribution revealed that pollution in the studied area is non-homogeneous, and agricultural activities (As, Cu, and Cd), transportation emission, coal combustion, and smelting activities (Zn, Pb, and Cu) were ascertained as the potential sources based on the Positive matrix factorization (PMF) analysis results.

154 citations

Journal ArticleDOI
TL;DR: The effects of soil factors including soil organic matter, soil pH, redox potential, and soil microbes which influencing Cd uptake by rice plant are highlighted and management strategies to offset its effects are described.

125 citations

Journal ArticleDOI
TL;DR: Regional soil threshold that derived using the models, can avoid exceedance of Cd in rice and thereby enable local agricultural practitioners or authorities to develop appropriate management for croplands with high Cd background.

112 citations

References
More filters
Journal ArticleDOI
TL;DR: A broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance is provided.
Abstract: Heavy metals such as Cu and Zn are essential for normal plant growth, although elevated concentrations of both essential and non-essential metals can result in growth inhibition and toxicity symptoms. Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. These include roles for the following: for mycorrhiza and for binding to cell wall and extracellular exudates; for reduced uptake or efflux pumping of metals at the plasma membrane; for chelation of metals in the cytosol by peptides such as phytochelatins; for the repair of stress-damaged proteins; and for the compartmentation of metals in the vacuole by tonoplast-located transporters. This review provides a broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance.

2,751 citations

Journal ArticleDOI
TL;DR: This review article comprehensively discusses the background, concepts and future trends in phytoremediation of heavy metals.

2,718 citations

Journal ArticleDOI
TL;DR: Biological mechanisms of toxic metal uptake, translocation and resistance as well as strategies for improving phytoremediation are also discussed.
Abstract: Toxic metal pollution of waters and soils is a major environmental problem, and most conventional remediation approaches do not provide acceptable solutions. The use of specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called phytoremediation. Three subsets of this technology are applicable to toxic metal remediation: (1) Phytoextraction--the use of metal-accumulating plants to remove toxic metals from soil; (2) Rhizofiltration--the use of plant roots to remove toxic metals from polluted waters; and (3) Phytostabilization--the use of plants to eliminate the bioavailability of toxic metals in soils. Biological mechanisms of toxic metal uptake, translocation and resistance as well as strategies for improving phytoremediation are also discussed.

2,183 citations

Journal ArticleDOI
TL;DR: An overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops and ways in which the potential of MAS can be realized are suggested.
Abstract: DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker–trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.

1,736 citations

Journal ArticleDOI
TL;DR: Ample evidence is presented that silicon, when readily available to plants, plays a large role in their growth, mineral nutrition, mechanical strength, and resistance to fungal diseases, herbivory, and adverse chemical conditions of the medium.
Abstract: Silicon is the second most abundant element in soils, the mineral substrate for most of the world's plant life. The soil water, or the "soil solution," contains silicon, mainly as silicic acid, H4SiO4, at 0.1-0.6 mM--concentrations on the order of those of potassium, calcium, and other major plant nutrients, and well in excess of those of phosphate. Silicon is readily absorbed so that terrestrial plants contain it in appreciable concentrations, ranging from a fraction of 1% of the dry matter to several percent, and in some plants to 10% or even higher. In spite of this prominence of silicon as a mineral constituent of plants, it is not counted among the elements defined as "essential," or nutrients, for any terrestrial higher plants except members of the Equisitaceae. For that reason it is not included in the formulation of any of the commonly used nutrient solutions. The plant physiologist's solution-cultured plants are thus anomalous, containing only what silicon is derived as a contaminant of their environment. Ample evidence is presented that silicon, when readily available to plants, plays a large role in their growth, mineral nutrition, mechanical strength, and resistance to fungal diseases, herbivory, and adverse chemical conditions of the medium. Plants grown in conventional nutrient solutions are thus to an extent experimental artifacts. Omission of silicon from solution cultures may lead to distorted results in experiments on inorganic plant nutrition, growth and development, and responses to environmental stress.

1,558 citations