scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Caffeine and anaerobic performance: ergogenic value and mechanisms of action.

01 Jan 2009-Sports Medicine (Springer International Publishing)-Vol. 39, Iss: 10, pp 813-832
TL;DR: Recent studies incorporating trained subjects and paradigms specific to intermittent sports activity support the notion that caffeine is ergogenic to an extent with anaerobic exercise, and suggest that caffeine stimulates the CNS, which could potentially have favourable effects on negating decreased firing rates of motor units and possibly produce a more sustainable and forceful muscle contraction.
Abstract: The effect caffeine elicits on endurance performance is well founded. However, comparatively less research has been conducted on the ergogenic potential of anaerobic performance. Some studies showing no effect of caffeine on performance used untrained subjects and designs often not conducive to observing an ergogenic effect. Recent studies incorporating trained subjects and paradigms specific to intermittent sports activity support the notion that caffeine is ergogenic to an extent with anaerobic exercise. Caffeine seems highly ergogenic for speed endurance exercise ranging in duration from 60 to 180 seconds. However, other traditional models examining power output (i.e. 30-second Wingate test) have shown minimal effect of caffeine on performance. Conversely, studies employing sport-specific methodologies (i.e. hockey, rugby, soccer) with shorter duration (i.e. 4–6 seconds) show caffeine to be ergogenic during high-intensity intermittent exercise. Recent studies show caffeine affects isometric maximal force and offers introductory evidence for enhanced muscle endurance for lower body musculature. However, isokinetic peak torque, one-repetition maximum and muscular endurance for upper body musculature are less clear. Since relatively few studies exist with resistance training, a definite conclusion cannot be reached on the extent caffeine affects performance.
Citations
More filters
Journal ArticleDOI
TL;DR: The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance, and the literature is equivocal when considering the effects of caffeine supplementation on strength-power performance.
Abstract: Position Statement: The position of The Society regarding caffeine supplementation and sport performance is summarized by the following seven points: 1.) Caffeine is effective for enhancing sport performance in trained athletes when consumed in low-to-moderate dosages (~3-6 mg/kg) and overall does not result in further enhancement in performance when consumed in higher dosages (≥ 9 mg/kg). 2.) Caffeine exerts a greater ergogenic effect when consumed in an anhydrous state as compared to coffee. 3.) It has been shown that caffeine can enhance vigilance during bouts of extended exhaustive exercise, as well as periods of sustained sleep deprivation. 4.) Caffeine is ergogenic for sustained maximal endurance exercise, and has been shown to be highly effective for time-trial performance. 5.) Caffeine supplementation is beneficial for high-intensity exercise, including team sports such as soccer and rugby, both of which are categorized by intermittent activity within a period of prolonged duration. 6.) The literature is equivocal when considering the effects of caffeine supplementation on strength-power performance, and additional research in this area is warranted. 7.) The scientific literature does not support caffeine-induced diuresis during exercise, or any harmful change in fluid balance that would negatively affect performance.

482 citations

Journal ArticleDOI
TL;DR: Repeated administration of caffeine is an effective strategy to maintain physical and cognitive capabilities, since most real-world activities require complex decision making, motor processing and movement.

436 citations

Journal ArticleDOI
TL;DR: The objective of this article is to review the current U.S. energy drink market with emphasis on its market size, target demographic, active ingredients, potential benefits, safety, and regulations.
Abstract: The consumption of energy drinks is rapidly increasing, as demonstrated by their large market growth. The targeted demographic group is teenagers, young adults, 18 to 34 y old; although expansion into nontraditional markets is also occurring. It is claimed that energy drinks can offer an increased energy boost related to their ingredient profile of caffeine, taurine, herbal extracts, and vitamins. Research suggests that energy drink formulations, in addition to increasing energy utilization, may also improve mood, enhance physical endurance, reduce mental fatigue, and increase reaction time. However, in most cases, the corresponding mechanisms of action are not clear. In addition, concerns have been raised over their safety and with a currently weak regulatory environment, efforts need to be made to ensure consumer safety. The objective of this article is to review the current U.S. energy drink market with emphasis on its market size, target demographic, active ingredients, potential benefits, safety, and regulations.

327 citations

Journal ArticleDOI
TL;DR: The ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis.
Abstract: Caffeine is a popular work-enhancing supplement that has been actively researched since the 1970s. The majority of research has examined the effects of moderate to high caffeine doses (5–13 mg/kg body mass) on exercise and sport. These caffeine doses have profound effects on the responses to exercise at the whole-body level and are associated with variable results and some undesirable side effects. Low doses of caffeine (<3 mg/kg body mass, ~200 mg) are also ergogenic in some exercise and sport situations, although this has been less well studied. Lower caffeine doses (1) do not alter the peripheral whole-body responses to exercise; (2) improve vigilance, alertness, and mood and cognitive processes during and after exercise; and (3) are associated with few, if any, side effects. Therefore, the ergogenic effect of low caffeine doses appears to result from alterations in the central nervous system. However, several aspects of consuming low doses of caffeine remain unresolved and suffer from a paucity of research, including the potential effects on high-intensity sprint and burst activities. The responses to low doses of caffeine are also variable and athletes need to determine whether the ingestion of ~200 mg of caffeine before and/or during training and competitions is ergogenic on an individual basis.

213 citations

Journal ArticleDOI
TL;DR: The meta-analyses showed significant ergogenic effects of caffeine ingestion on maximal muscle strength of upper body and muscle power and future studies should more rigorously control the effectiveness of blinding.
Abstract: Caffeine is commonly used as an ergogenic aid. Literature about the effects of caffeine ingestion on muscle strength and power is equivocal. The aim of this systematic review and meta-analysis was to summarize results from individual studies on the effects of caffeine intake on muscle strength and power. A search through eight databases was performed to find studies on the effects of caffeine on: (i) maximal muscle strength measured using 1 repetition maximum tests; and (ii) muscle power assessed by tests of vertical jump. Meta-analyses of standardized mean differences (SMD) between placebo and caffeine trials from individual studies were conducted using the random effects model. Ten studies on the strength outcome and ten studies on the power outcome met the inclusion criteria for the meta-analyses. Caffeine ingestion improved both strength (SMD = 0.20; 95% confidence interval [CI]: 0.03, 0.36; p = 0.023) and power (SMD = 0.17; 95% CI: 0.00, 0.34; p = 0.047). A subgroup analysis indicated that caffeine significantly improves upper (SMD = 0.21; 95% CI: 0.02, 0.39; p = 0.026) but not lower body strength (SMD = 0.15; 95% CI: -0.05, 0.34; p = 0.147). The meta-analyses showed significant ergogenic effects of caffeine ingestion on maximal muscle strength of upper body and muscle power. Future studies should more rigorously control the effectiveness of blinding. Due to the paucity of evidence, additional findings are needed in the female population and using different forms of caffeine, such as gum and gel.

191 citations

References
More filters
Journal Article
TL;DR: Caffeine is the most widely consumed behaviorally active substance in the world and almost all caffeine comes from dietary sources (beverages and food).
Abstract: Caffeine is the most widely consumed behaviorally active substance in the world. Almost all caffeine comes from dietary sources (beverages and food), most of it from coffee and tea. Acute and, especially, chronic caffeine intake appear to have only minor negative consequences on health. For this

2,395 citations

Journal ArticleDOI
TL;DR: Data indicated a significant role for the enzyme in the control of the levels of adenosine 3’,5’-phosphate present in biological systems, which was very desirable because of the extremely low levels present in most biological materials.

2,056 citations

Journal Article
TL;DR: The evidence is now compelling that ATP plays important physiological and/ or pathophysiological roles in a variety of biological systems, and the presence of receptors for ADP and adenosine (presumably A2) receptors exist on platelets is compelling.
Abstract: “Receptors recognize a distinct chemical entity and translate information from that entity into a form that the cell can read to alter its state” (Kenakin et al., 1992). Even though the receptors are often pharmacologically defined on the basis of synthetic compounds, they are assumed to have developed to respond to endogenous molecules. Therefore, receptors are generally named on the basis of their natural ligands. Hence, it is appropriate to very briefly summarize the evidence that purine nucleotides and nucleosides are natural ligands for a wide class of receptors. In a seminal paper, Drury and Szent-Gyorgyi (1929) showed that adenosine exerted a large number of biological effects, including bradycardia and vasodilation. A wider interest in the role of adenosine followed from the demonstration in 1963 that adenosine can be produced by the hypoxic heart. Two groups independently formulated the hypothesis that adenosine may be involved in the metabolic regulation of coronary blood flow (Berne, 1963; Gerlach et al., 1963). The observation by de Gubareff and Sleator (1965) that the actions of adenosine in heart tissue could be blocked by caffeine suggested the existence of an adenosine receptor. The potent cardiovascular effects of adenosine led to an interest in the synthesis of new adenosine analogs, and careful dose-response studies with a number of these drugs (Cobbin et al., 1974) strongly suggested the presence of a receptor for adenosine-like compounds. Sattin and Rall (1970) reported that adenosine increased cyclic AMP accumulation in slices of rodent brain and that this adenosine-induced second-messenger response was blocked by methylxanthines. Their findings suggested that adenosine receptors exist in the central nervous system. The essentially simultaneous findings by Mcilwain (1972), that such brain slices actually elaborate adenosine in concentrations that would be sufficient to elevate cyclic AMP, provided support that these putative receptors were physiologically occupied by adenosine. Thus, in the 1970s there was good evidence that there were receptors for adenosine at which methylxanthines acted as antagonists. Biochemical evidence for the existence of multiple adenosine receptors was subsequently provided by the demonstration that adenosine analogs increased cyclic AMP production in some preparations and decreased it in others. Because the relative agonist potency for a variety of adenosine analogs was different for these two types of effects, the presence of two classes of receptors, called A1 and A2 (van Calker et al., 1979) or Ri and Ra (Londos et al., 1980), was proposed. The A1/A2 nomenclature is now generally used. The presence of receptors for ADP, particularly on blood platelets, was also recognized several decades ago. Studies of the factors in blood that induce platelet aggregation led to the identification of ADP as an active component present in red blood cell extracts (Gaarder et al., 1961). The evidence that ADP and adenosine (presumably A2) receptors exist on platelets was summarized by Haslam and Cusack (1981). Four decades ago, ATP was shown to produce important cardiovascular effects (Green and Stoner, 1950) and to be released from sensory nerves (Holton and Holton, 1954; Holton, 1959), hinting at a role in neural transmission. In his landmark review of purinergic nerves, Burnstock (1972) postulated the existence of specific ATP receptors. Although evidence in support of this idea was not overwhelming at the time, many subsequent studies have supported the existence of receptors for extracellular ATP (Burnstock and Brown, 1981; Gordon, 1986; O’Connor et al., 1991). Similarly, the evidence is now compelling that ATP plays important physiological and/ or pathophysiological roles in a variety of biological systems, including that of a neurotransmitter in peripheral and central neurons. Finally, diadenosinetetraphosphate is a dinucleotide stored in synaptic vesicles and chromaffin granules (Flodgaard and Klenow, 1982; Rodriguez del Castillo et al., 1988) and released therefrom (Pintor et al., 1991a, 1992). The purine dinucleotide also binds with subnanomolar affinity to receptors (Pintor et al., 1991b, 1993) and exerts biological effects (Pintor et al., 1993), indicating that it is an endogenous purinoceptor ligand. Thus, strong evidence for the presence of receptors for the endogenous ligands adenosine, ADP, ATP, and dia-denosinetetraphosphate had accumulated. This group of receptors is called the purinoceptors. If at some future time there is compelling evidence that UTP, or another pyrimidine nucleotide, is an endogenous ligand at receptors that respond poorly or not at all to ATP, then this terminology may need revision.

1,611 citations

Journal ArticleDOI
TL;DR: It is suggested that the "dysfunction" that is characteristic of several types of chronic musculoskeletal pain is a normal protective adaptation and is not a cause of pain.
Abstract: Articles describing motor function in five chronic musculoskeletal pain conditions (temporomandibular disorders, muscle tension headache, fibromyalgia, chronic lower back pain, and postexercise mus...

986 citations

Journal ArticleDOI
TL;DR: The limited information available suggests that caffeine non-users and users respond similarly and that withdrawal from caffeine may not be important, and caffeine may act synergistically with other drugs including ephedrine and anti-inflammatory agents.
Abstract: Caffeine is a common substance in the diets of most athletes and it is now appearing in many new products, including energy drinks, sport gels, alcoholic beverages and diet aids. It can be a powerful ergogenic aid at levels that are considerably lower than the acceptable limit of the International Olympic Committee and could be beneficial in training and in competition. Caffeine does not improve maximal oxygen capacity directly, but could permit the athlete to train at a greater power output and/or to train longer. It has also ben shown to increase speed and/or power output in simulated race conditions. These effects have been found in activities that last as little as 60 seconds or as long as 2 hours. There is less information about the effects of caffeine on strength; however, recent work suggests no effect on maximal ability, but enhanced endurance or resistance to fatigue. There is no evidence that caffeine ingestion before exercise leads to dehydration, ion imbalance, or any other adverse effects. The ingestion of caffeine as coffee appears to be ineffective compared to doping with pure caffeine. Related compounds such as theophylline are also potent ergogenic aids. Caffeine may act synergistically with other drugs including ephedrine and anti-inflammatory agents. It appears that male and female athletes have similar caffeine pharmacokinetics, i.e., for a given dose of caffeine, the time course and absolute plasma concentrations of caffeine and its metabolites are the same. In addition, exercise or dehydration does not affect caffeine pharmacokinetics. The limited information available suggests that caffeine non-users and users respond similarly and that withdrawal from caffeine may not be important. The mechanism(s) by which caffeine elicits its ergogenic effects are unknown, but the popular theory that it enhances fat oxidation and spares muscle glycogen has very little support and is an incomplete explanation at best. Caffeine may work, in part, by creating a more favourable intracellular ionic environment in active muscle. This could facilitate force production by each motor unit.

760 citations

Trending Questions (1)
How much caffeine does dark matter have?

However, a normal physiological dose of caffeine in vivo does not indicate this mechanism plays a large role.