scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Calendar queues: a fast 0(1) priority queue implementation for the simulation event set problem

01 Oct 1988-Communications of The ACM (ACM)-Vol. 31, Iss: 10, pp 1220-1227
TL;DR: A new priority queue implementation for the future event set problem is described and shown experimentally to be O(1) in queue size for the priority increment distributions recently considered by Jones in his review article.
Abstract: A new priority queue implementation for the future event set problem is described in this article. The new implementation is shown experimentally to be O(1) in queue size for the priority increment distributions recently considered by Jones in his review article. It displays hold times three times shorter than splay trees for a queue size of 10,000 events. The new implementation, called a calendar queue, is a very simple structure of the multiple list variety using a novel solution to the overflow problem.
Citations
More filters
Book
01 Jan 2004
TL;DR: This book offers a detailed and comprehensive presentation of the basic principles of interconnection network design, clearly illustrating them with numerous examples, chapter exercises, and case studies, allowing a designer to see all the steps of the process from abstract design to concrete implementation.
Abstract: One of the greatest challenges faced by designers of digital systems is optimizing the communication and interconnection between system components. Interconnection networks offer an attractive and economical solution to this communication crisis and are fast becoming pervasive in digital systems. Current trends suggest that this communication bottleneck will be even more problematic when designing future generations of machines. Consequently, the anatomy of an interconnection network router and science of interconnection network design will only grow in importance in the coming years. This book offers a detailed and comprehensive presentation of the basic principles of interconnection network design, clearly illustrating them with numerous examples, chapter exercises, and case studies. It incorporates hardware-level descriptions of concepts, allowing a designer to see all the steps of the process from abstract design to concrete implementation. ·Case studies throughout the book draw on extensive author experience in designing interconnection networks over a period of more than twenty years, providing real world examples of what works, and what doesn't. ·Tightly couples concepts with implementation costs to facilitate a deeper understanding of the tradeoffs in the design of a practical network. ·A set of examples and exercises in every chapter help the reader to fully understand all the implications of every design decision. Table of Contents Chapter 1 Introduction to Interconnection Networks 1.1 Three Questions About Interconnection Networks 1.2 Uses of Interconnection Networks 1.3 Network Basics 1.4 History 1.5 Organization of this Book Chapter 2 A Simple Interconnection Network 2.1 Network Specifications and Constraints 2.2 Topology 2.3 Routing 2.4 Flow Control 2.5 Router Design 2.6 Performance Analysis 2.7 Exercises Chapter 3 Topology Basics 3.1 Nomenclature 3.2 Traffic Patterns 3.3 Performance 3.4 Packaging Cost 3.5 Case Study: The SGI Origin 2000 3.6 Bibliographic Notes 3.7 Exercises Chapter 4 Butterfly Networks 4.1 The Structure of Butterfly Networks 4.2 Isomorphic Butterflies 4.3 Performance and Packaging Cost 4.4 Path Diversity and Extra Stages 4.5 Case Study: The BBN Butterfly 4.6 Bibliographic Notes 4.7 Exercises Chapter 5 Torus Networks 5.1 The Structure of Torus Networks 5.2 Performance 5.3 Building Mesh and Torus Networks 5.4 Express Cubes 5.5 Case Study: The MIT J-Machine 5.6 Bibliographic Notes 5.7 Exercises Chapter 6 Non-Blocking Networks 6.1 Non-Blocking vs. Non-Interfering Networks 6.2 Crossbar Networks 6.3 Clos Networks 6.4 Benes Networks 6.5 Sorting Networks 6.6 Case Study: The Velio VC2002 (Zeus) Grooming Switch 6.7 Bibliographic Notes 6.8 Exercises Chapter 7 Slicing and Dicing 7.1 Concentrators and Distributors 7.2 Slicing and Dicing 7.3 Slicing Multistage Networks 7.4 Case Study: Bit Slicing in the Tiny Tera 7.5 Bibliographic Notes 7.6 Exercises Chapter 8 Routing Basics 8.1 A Routing Example 8.2 Taxonomy of Routing Algorithms 8.3 The Routing Relation 8.4 Deterministic Routing 8.5 Case Study: Dimension-Order Routing in the Cray T3D 8.6 Bibliographic Notes 8.7 Exercises Chapter 9 Oblivious Routing 9.1 Valiant's Randomized Routing Algorithm 9.2 Minimal Oblivious Routing 9.3 Load-Balanced Oblivious Routing 9.4 Analysis of Oblivious Routing 9.5 Case Study: Oblivious Routing in the Avici Terabit Switch Router(TSR) 9.6 Bibliographic Notes 9.7 Exercises Chapter 10 Adaptive Routing 10.1 Adaptive Routing Basics 10.2 Minimal Adaptive Routing 10.3 Fully Adaptive Routing 10.4 Load-Balanced Adaptive Routing 10.5 Search-Based Routing 10.6 Case Study: Adaptive Routing in the Thinking Machines CM-5 10.7 Bibliographic Notes 10.8 Exercises Chapter 11 Routing Mechanics 11.1 Table-Based Routing 11.2 Algorithmic Routing 11.3 Case Study: Oblivious Source Routing in the IBM Vulcan Network 11.4 Bibliographic Notes 11.5 Exercises Chapter 12 Flow Control Basics 12.1 Resources and Allocation Units 12.2 Bufferless Flow Control 12.3 Circuit Switching 12.4 Bibliographic Notes 12.5 Exercises Chapter 13 Buffered Flow Control 13.1 Packet-Buffer Flow Control 13.2 Flit-Buffer Flow Control 13.3 Buffer Management and Backpressure 13.4 Flit-Reservation Flow Control 13.5 Bibliographic Notes 13.6 Exercises Chapter 14 Deadlock and Livelock 14.1 Deadlock 14.2 Deadlock Avoidance 14.3 Adaptive Routing 14.4 Deadlock Recovery 14.5 Livelock 14.6 Case Study: Deadlock Avoidance in the Cray T3E 14.7 Bibliographic Notes 14.8 Exercises Chapter 15 Quality of Service 15.1 Service Classes and Service Contracts 15.2 Burstiness and Network Delays 15.3 Implementation of Guaranteed Services 15.4 Implementation of Best-Effort Services 15.5 Separation of Resources 15.6 Case Study: ATM Service Classes 15.7 Case Study: Virtual Networks in the Avici TSR 15.8 Bibliographic Notes 15.9 Exercises Chapter 16 Router Architecture 16.1 Basic Router Architecture 16.2 Stalls 16.3 Closing the Loop with Credits 16.4 Reallocating a Channel 16.5 Speculation and Lookahead 16.6 Flit and Credit Encoding 16.7 Case Study: The Alpha 21364 Router 16.8 Bibliographic Notes 16.9 Exercises Chapter 17 Router Datapath Components 17.1 Input Buffer Organization 17.2 Switches 17.3 Output Organization 17.4 Case Study: The Datapath of the IBM Colony Router 17.5 Bibliographic Notes 17.6 Exercises Chapter 18 Arbitration 18.1 Arbitration Timing 18.2 Fairness 18.3 Fixed Priority Arbiter 18.4 Variable Priority Iterative Arbiters 18.5 Matrix Arbiter 18.6 Queuing Arbiter 18.7 Exercises Chapter 19 Allocation 19.1 Representations 19.2 Exact Algorithms 19.3 Separable Allocators 19.4 Wavefront Allocator 19.5 Incremental vs. Batch Allocation 19.6 Multistage Allocation 19.7 Performance of Allocators 19.8 Case Study: The Tiny Tera Allocator 19.9 Bibliographic Notes 19.10 Exercises Chapter 20 Network Interfaces 20.1 Processor-Network Interface 20.2 Shared-Memory Interface 20.3 Line-Fabric Interface 20.4 Case Study: The MIT M-Machine Network Interface 20.5 Bibliographic Notes 20.6 Exercises Chapter 21 Error Control 411 21.1 Know Thy Enemy: Failure Modes and Fault Models 21.2 The Error Control Process: Detection, Containment, and Recovery 21.3 Link Level Error Control 21.4 Router Error Control 21.5 Network-Level Error Control 21.6 End-to-end Error Control 21.7 Bibliographic Notes 21.8 Exercises Chapter 22 Buses 22.1 Bus Basics 22.2 Bus Arbitration 22.3 High Performance Bus Protocol 22.4 From Buses to Networks 22.5 Case Study: The PCI Bus 22.6 Bibliographic Notes 22.7 Exercises Chapter 23 Performance Analysis 23.1 Measures of Interconnection Network Performance 23.2 Analysis 23.3 Validation 23.4 Case Study: Efficiency and Loss in the BBN Monarch Network 23.5 Bibliographic Notes 23.6 Exercises Chapter 24 Simulation 24.1 Levels of Detail 24.2 Network Workloads 24.3 Simulation Measurements 24.4 Simulator Design 24.5 Bibliographic Notes 24.6 Exercises Chapter 25 Simulation Examples 495 25.1 Routing 25.2 Flow Control Performance 25.3 Fault Tolerance Appendix A Nomenclature Appendix B Glossary Appendix C Network Simulator

3,233 citations

Proceedings Article
26 Jan 1998
TL;DR: Bro as mentioned in this paper is a stand-alone system for detecting network intruders in real-time by passively monitoring a network link over which the intruder's traffic transits, which emphasizes high-speed (FDDI-rate) monitoring, realtime notification, clear separation between mechanism and policy and extensibility.
Abstract: We describe Bro, a stand-alone system for detecting network intruders in real-time by passively monitoring a network link over which the intruder's traffic transits. We give an overview of the system's design, which emphasizes high-speed (FDDI-rate) monitoring, real-time notification, clear separation between mechanism and policy, and extensibility. To achieve these ends, Bro is divided into an "event engine" that reduces a kernel-filtered network traffic stream into a series of higher-level events, and a "policy script interpreter" that interprets event handlers written in a specialized language used to express a site's security policy. Event handlers can update state information, synthesize new events, record information to disk, and generate real-time notifications via syslog. We also discuss a number of attacks that attempt to subvert passive monitoring systems and defenses against these, and give particulars of how Bro analyzes the four applications integrated into it so far: Finger, FTP, Portmapper and Telnet. The system is publicly available in source code form.

2,468 citations

Journal ArticleDOI
TL;DR: An overview of the Bro system's design, which emphasizes high-speed (FDDI-rate) monitoring, real-time notification, clear separation between mechanism and policy, and extensibility, is given.

2,236 citations

Journal ArticleDOI
01 Oct 1995
TL;DR: Several service disciplines that are proposed in the literature to provide per-connection end-to-end performance guarantees in packet-switching networks are surveyed and a general framework for studying and comparing these disciplines is presented.
Abstract: While today's computer networks support only best-effort service, future packet-switching integrated-services networks will have to support real-time communication services that allow clients to transport information with performance guarantees expressed in terms of delay, delay jitter, throughput, and loss rate. An important issue in providing guaranteed performance service is the choice of the packet service discipline at switching nodes. In this paper, we survey several service disciplines that are proposed in the literature to provide per-connection end-to-end performance guarantees in packet-switching networks. We describe their mechanisms, their similarities and differences and the performance guarantees they can provide. Various issues and tradeoffs in designing service disciplines for guaranteed performance service are discussed, and a general framework for studying and comparing these disciplines are presented. >

1,226 citations


Cites methods from "Calendar queues: a fast 0(1) priori..."

  • ...Figure 19 shows an example implementation of RCSP based on a modi ed version of a calendar queue [4]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a review of different aspects of the simulation of spiking neural networks is presented, with the aim of identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking networks.
Abstract: We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.

873 citations

References
More filters
Journal ArticleDOI
TL;DR: The splay tree, a self-adjusting form of binary search tree, is developed and analyzed and is found to be as efficient as balanced trees when total running time is the measure of interest.
Abstract: The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The binary search tree is a data structure for representing tables and lists so that accessing, inserting, and deleting items is easy. On an n-node splay tree, all the standard search tree operations have an amortized time bound of O(log n) per operation, where by “amortized time” is meant the time per operation averaged over a worst-case sequence of operations. Thus splay trees are as efficient as balanced trees when total running time is the measure of interest. In addition, for sufficiently long access sequences, splay trees are as efficient, to within a constant factor, as static optimum search trees. The efficiency of splay trees comes not from an explicit structural constraint, as with balanced trees, but from applying a simple restructuring heuristic, called splaying, whenever the tree is accessed. Extensions of splaying give simplified forms of two other data structures: lexicographic or multidimensional search trees and link/cut trees.

1,321 citations

Journal ArticleDOI
TL;DR: A data structure is described which can be used for representing a collection of priority queues and the primitive operations are insertion, deletion, union, update, and search for an item of earliest priority.
Abstract: A data structure is described which can be used for representing a collection of priority queues. The primitive operations are insertion, deletion, union, update, and search for an item of earliest priority.

318 citations

Journal ArticleDOI
TL;DR: A new form of heap is described, intended to be competitive with the Fibonacci heap in theory and easy to implement and fast in practice, and a partial complexity analysis of pairing heaps is provided.
Abstract: Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority queue) called theFibonacci heap. Although theoretically efficient, Fibonacci heaps are complicated to implement and not as fast in practice as other kinds of heaps. In this paper we describe a new form of heap, called thepairing heap, intended to be competitive with the Fibonacci heap in theory and easy to implement and fast in practice. We provide a partial complexity analysis of pairing heaps. Complete analysis remains an open problem.

243 citations

Journal ArticleDOI
TL;DR: Execution times for a variety of priority-queue implementations are compared under the hold model, showing many to be faster than implicit heaps.
Abstract: Execution times for a variety of priority-queue implementations are compared under the hold model, showing many to be faster than implicit heaps.

232 citations

Proceedings ArticleDOI
01 Dec 1983
TL;DR: In this paper, self-adjusting trees have been used to create simple data structures for priority queues and search trees, where the adjustment is a sequence of exchanges of children, whereas in the case of search trees it is a series of rotations.
Abstract: We use the idea of self-adjusting trees to create new, simple data structures for priority queues (which we call heaps) and search trees. Unlike other efficient implementations of these data structures, self-adjusting trees have no balance condition. Instead, whenever the tree is accessed, certain adjustments take place. (In the case of heaps, the adjustment is a sequence of exchanges of children, in the case of search trees the adjustment is a sequence of rotations.) Self-adjusting trees are efficient in an amortized sense: any particular operation may be slow but any sequence of operations must be fast. Self-adjusting trees have two advantages over the corresponding balanced trees in both applications. First, they are simpler to implement because there are fewer cases in the algorithms. Second, they are more storage-efficient because no balance information needs to be stored. Furthermore, a self-adjusting search tree has the remarkable property that its running time (for any sufficiently long sequence of search operations) is within a constant factor of the running time for the same set of searches on any fixed binary tree. It follows that a self-adjusting tree is (up to a constant factor) as fast as the optimal fixed tree for a particular probability distribution of search requests, even though the distribution is unknown.

130 citations