scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Caloric Restriction Delays Disease Onset and Mortality in Rhesus Monkeys

TL;DR: Findings of a 20-year longitudinal adult-onset CR study in rhesus monkeys aimed at filling this critical gap in aging research demonstrate that CR slows aging in a primate species.
Abstract: Caloric restriction (CR), without malnutrition, delays aging and extends life span in diverse species; however, its effect on resistance to illness and mortality in primates has not been clearly established We report findings of a 20-year longitudinal adult-onset CR study in rhesus monkeys aimed at filling this critical gap in aging research In a population of rhesus macaques maintained at the Wisconsin National Primate Research Center, moderate CR lowered the incidence of aging-related deaths At the time point reported, 50% of control fed animals survived as compared with 80% of the CR animals Furthermore, CR delayed the onset of age-associated pathologies Specifically, CR reduced the incidence of diabetes, cancer, cardiovascular disease, and brain atrophy These data demonstrate that CR slows aging in a primate species

Content maybe subject to copyright    Report

Citations
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
06 Jun 2013-Cell
TL;DR: Nine tentative hallmarks that represent common denominators of aging in different organisms are enumerated, with special emphasis on mammalian aging, to identify pharmaceutical targets to improve human health during aging, with minimal side effects.

9,980 citations


Cites background from "Caloric Restriction Delays Disease ..."

  • ...Consistent with the relevance of deregulated nutrient sensing as a hallmark of aging, dietary restriction (DR) increases lifespan or healthspan in all investigated eukaryote species, including nonhuman primates (Colman et al., 2009; Fontana et al., 2010; Mattison et al., 2012)....

    [...]

Journal ArticleDOI
16 Apr 2010-Science
TL;DR: Dietary restriction and reduced activity of nutrient-sensing pathways may slow aging by similar mechanisms, which have been conserved during evolution, and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.
Abstract: When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.

2,522 citations

Journal ArticleDOI
24 Mar 2010-Nature
TL;DR: The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more, which means that over evolutionary time mutations have increased lifespan more than 2,000-fold.
Abstract: The nematode Caenorhabditis elegans ages and dies in a few weeks, but humans can live for 100 years or more. Assuming that the ancestor we share with nematodes aged rapidly, this means that over evolutionary time mutations have increased lifespan more than 2,000-fold. Which genes can extend lifespan? Can we augment their activities and live even longer? After centuries of wistful poetry and wild imagination, we are now getting answers, often unexpected ones, to these fundamental questions.

2,466 citations

Journal ArticleDOI
TL;DR: Evidence that cancer and diseases of aging are two sides of the DNAdamage problem is presented, followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.
Abstract: NA damage has emerged as a major culprit in cancer and many diseases related to aging. The stability of the genome is supported by an intricate machinery of repair, damage tolerance, and checkpoint pathways that counteracts DNA damage. In addition, DNA damage and other stresses can trigger a highly conserved, anticancer, antiaging survival response that suppresses metabolism and growth and boosts defenses that maintain the integrity of the cell. Induction of the survival response may allow interventions that improve health and extend the life span. Recently, the first candidate for such interventions, rapamycin (also known as sirolimus), has been identified. 1 Compromised repair systems in tumors also offer opportunities for intervention, making it possible to attack malignant cells in which maintenance of the genome has been weakened. Time-dependent accumulation of damage in cells and organs is associated with gradual functional decline and aging. 2 The molecular basis of this phenomenon is unclear, 3-5 whereas in cancer, DNA alterations are the major culprit. In this review, I present evidence that cancer and diseases of aging are two sides of the DNAdamage problem. An examination of the importance of DNA damage and the systems of genome maintenance in relation to aging is followed by an account of the derailment of genome guardian mechanisms in cancer and of how this cancerspecific phenomenon can be exploited for treatment.

1,917 citations

References
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Global grey matter volume decreased linearly with age, with a significantly steeper decline in males, and local areas of accelerated loss were observed bilaterally in the insula, superior parietal gyri, central sulci, and cingulate sulci.

4,341 citations

Book
01 Dec 1988

1,544 citations


"Caloric Restriction Delays Disease ..." refers background in this paper

  • ...the aging process(2) and thereby identify underlying mechanisms(3)....

    [...]

Journal Article
TL;DR: This report is in the nature of a progress report dealing with a study employing rats to determine the effect of retarding growth upon the total length of life and to measure the effects of retardation upon the ultimate size of the animal's body.

719 citations

Related Papers (5)