scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Calorimetric study of octylcyanobiphenyl liquid crystal confined to a controlled-pore glass.

22 Aug 2003-Physical Review E (American Physical Society)-Vol. 68, Iss: 2, pp 021705-021705
TL;DR: The heat-capacity response at the weakly first order I-N and continuous N-SmA phase transitions gradually approaches the tricritical-like and three-dimensional XY behavior, respectively.
Abstract: We present a calorimetric study of the phase behavior of octylcyanobiphenyl (8CB) liquid crystal confined to a controlled-pore glass (CPG). We used CPG matrices with characteristic void diameters ranging from 400 to 20 nm. In bulk we obtain weakly first-order isotropic to nematic (I-N) phase transition and nearly continuous character of the nematic to smectic-A (N-SmA) phase transition. In all CPG matrices the I-N transition remains weakly first order, while the N-SmA one becomes progressively suppressed with decreasing CPG pore radius. With decreased pore diameters both phase transition temperatures monotonously decrease following similar trends, but increasing the stability range of the N phase. The heat-capacity response at the weakly first order I-N and continuous N-SmA phase transitions gradually approaches the tricritical-like and three-dimensional XY behavior, respectively. The main observed features were explained using a bicomponent single pore type phenomenological model.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, optical birefringence measurements on a rod-like liquid crystal (8OCB), imbibed in silica channels (7 nm diameter), are presented and compared to the thermotropic bulk behavior.
Abstract: Optical birefringence measurements on a rod-like liquid crystal (8OCB), imbibed in silica channels (7 nm diameter), are presented and compared to the thermotropic bulk behavior. The orientational and positional order of the confined liquid evolves continuously at the paranematic-to-nematic and sizeably broadened at the nematic-to-smectic order transition, resp., in contrast to the discontinuous and well-defined second-order character of the bulk transitions. A Landau-de-Gennes analysis reveals identical strengths of the nematic and smectic ordering fields (imposed by the walls) and indicates that the smectic order is more affected by quenched disorder (originating in channel tortuosity and roughness) than the nematic transition.

34 citations

Journal ArticleDOI
TL;DR: It is shown experimentally that randomness and surface wetting become dominant over finite-size effects for 2R approximately<10 nm, in agreement with theoretical analysis.
Abstract: The influence of controlled-pore glass (CPG) confinement on the phase behavior of octylcyanobiphenyl liquid crystal (LC) is studied by means of x-ray scattering and high precision calorimetry. For CPG samples with pore diameter 2R>24nm, the smectic order parameter temperature dependence η(T) reveals apparent presmectic ordering far above the bulk smectic A–nematic (SmA-N) phase transition for both nontreated and silane-treated CPG matrices. The behavior of η(T) is qualitatively similar in all samples, well obeying the mean field approach (MFA) in which the surface wetting tendency plays the dominant role. In contrast, the critical fluctuations remain important in the specific heat data, which cannot be described within the MFA. We show experimentally that randomness and surface wetting become dominant over finite-size effects for 2R≲10nm, in agreement with theoretical analysis. In nontreated samples, the noncritical character of the static disorder and the interfacial LC-CPG coupling almost completely sup...

33 citations

Journal ArticleDOI
TL;DR: In this paper, the pore shape effect on the structure of a nanoconfined Gay-Berne system is studied, and the structure adopted by the confined phases is characterized by density profile and the orientational order parameter as a function of temperature.

28 citations

Journal ArticleDOI
15 Jan 2008-Langmuir
TL;DR: The authors' experimental results show good agreement with a Stefan-type model of the evolution of the nematic phase within the isotropic phase of a liquid crystal, and the presence of two growth regimes is consistent with the molecular simulations of Bradac et al.
Abstract: In this paper, we focus on the isotropic-to-nematic phase transition in a liquid-crystal droplet. We present the results of an experiment to measure the growth of the nematic phase within an isotropic phase liquid-crystal droplet. Experimentally, we observe two primary phase transition regimes. At short time scales, our experimental results (R(t) ∼ t0.51) show good agreement with a Stefan-type model of the evolution of the nematic phase within the isotropic phase of a liquid crystal. As time progresses, the growth of the nematic phase is restricted by increased confinement of the droplet boundary. During this stage of growth, the nematic phase grows at a slower rate of R(t) ∼ t0.31. The slower growth at later stages might be due to a variety of factors such as confinement-induced latent heat reduction; a change of defect strength during its evolution; or interactions between the defect and the interface between the liquid crystal and oil or between adjacent defects. The presence of two growth regimes is a...

25 citations

Journal ArticleDOI
TL;DR: Brownian simulation is used to study the effect of different sample histories in the low temperature regime in a three-dimensional model intermediate between SSS and RAN, and detects in the QLRO phase a domain-type structural pattern, consistent with ideas introduced by Giamarchi and Doussal on superconducting flux lattices.
Abstract: Glassy liquid crystalline systems are expected to show significant history-dependent effects. Two model glassy systems are the RAN and SSS (sprinkled silica spin) lattice models. The RAN model is a Lebwohl-Lasher lattice model with locally coupled nematic spins, together with uncorrelated random anisotropy fields at each site, while the SSS model has a finite concentration of impurity spins frozen in random directions. Here Brownian simulation is used to study the effect of different sample histories in the low temperature regime in a three-dimensional (d=3) model intermediate between SSS and RAN, in which a finite concentration p

24 citations

References
More filters
Book
01 Feb 1974
TL;DR: In this paper, the authors define an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures and describe the properties of these mixtures.
Abstract: Part 1 Liquid crystals - main types and properties: introduction - what is a liquid crystal? the building blocks nematics and cholesterics smectics columnar phases more on long-, quasi-long and short-range order remarkable features of liquid crystals. Part 2 Long- and short-range order in nematics: definition of an order parameter statistical theories of the nematic order phenomonological description of the nematic-isotopic mixtures. Part 3 Static distortion in a nematic single crystal: principles of the continuum theory magnetic field effects electric field effects in an insulating nematic fluctuations in the alignment hydrostatics of nematics. Part 4 Defects and textures in nematics: observations disclination lines point disclinations walls under magnetic fields umbilics surface disclinations. Part 5 Dynamical properties of nematics: the equations of "nematodynamics" experiments measuring the Leslie co-efficients convective instabilities under electric fields molecular motions. Part 6 Cholesterics: optical properties of an ideal helix agents influencing the pitch dynamical properties textures and defects in cholesterics. Part 7 Smectics: symmetry of the main smectic phases continuum description of smectics A and C remarks on phase and precritical phenomena.

9,683 citations

Journal ArticleDOI
TL;DR: The superconducting phase transition is predicted to be weakly first order, because of effects of the intrinsic fluctuating magnetic field, according to a Wilson-Fisher $\ensuremath{\epsilon}$expansion analysis, as well as a generalized mean-field calculation appropriate to a type-I superconductor.
Abstract: The superconducting phase transition is predicted to be weakly first order, because of effects of the intrinsic fluctuating magnetic field, according to a Wilson-Fisher $\ensuremath{\epsilon}$-expansion analysis, as well as a generalized mean-field calculation appropriate to a type-I superconductor. Similar results hold for the phase transition from a smectic-$A$ to a nematic liquid crystal.

653 citations

Reference BookDOI
29 Apr 1996
TL;DR: In this paper, the authors provide a current treatise of the subject matter and places it in the broader context of electrooptic applications, taking an interdisciplinary approach to the subject, combining basic principles of physics, chemistry, polymer science, materials science and engineering.
Abstract: Focusing on the applied and basic aspects of confined liquid crystals, this book provides a current treatise of the subject matter and places it in the broader context of electrooptic applications. The book takes an interdisciplinary approach to the subject, combining basic principles of physics, chemistry, polymer science, materials science and engineering. Key Features:

572 citations

Journal ArticleDOI
TL;DR: In this paper, an adiabatic scanning calorimeter has been used to study the thermal behavior of the liquid-crystal octylcyanobiphenyl (8CB) in the temperature range between 10 and 50°C.
Abstract: An adiabatic scanning calorimeter has been used to study the thermal behavior of the liquid-crystal octylcyanobiphenyl (8CB) in the temperature range between 10 and 50\ifmmode^\circ\else\textdegree\fi{}C. The solid---to---smectic-$A$ ($\mathrm{KA}$), the smectic-$A$---to---nematic ($\mathrm{AN}$), as well as the nematic-to-isotropic (NI) phase transitions, which fall in this temperature range, have been investigated in great detail. From our measuring procedure the enthalpy behavior (including latent heats) as well as the heat capacity have been obtained. For the KA transition the latent heat was 25.7\ifmmode\pm\else\textpm\fi{}1.0 kJ/mol and for the NI transition it was 612\ifmmode\pm\else\textpm\fi{}5 J/mol. Within the resolution of our experiment we find that the $\mathrm{AN}$ transition is a continuous one. For the latent heat, if any, we arrive at an upper limit of 0.4 J/mol (or 1.4\ifmmode\times\else\texttimes\fi{}${10}^{\ensuremath{-}3}$ J/g). The observed anomaly in the heat capacity for the $\mathrm{AN}$ transition is not consistent with a nearly logarithmic singularity as predicted by the $\mathrm{XY}$ model, instead we obtain a critical exponent $\ensuremath{\alpha}={\ensuremath{\alpha}}^{\ensuremath{'}}=0.31\ifmmode\pm\else\textpm\fi{}0.03$. This result is consistent with the anisotropic scaling relation ${\ensuremath{ u}}_{\ensuremath{\parallel}}+2{\ensuremath{ u}}_{\ensuremath{\perp}}=2\ensuremath{-}\ensuremath{\alpha}$. The pretransitional effects near the NI transition are in qualitative agreement with the hypothesis of quasitricritical behavior.

174 citations

Journal ArticleDOI
02 Nov 2001-Science
TL;DR: Experimental and theoretical studies of the effects of quenched disorder on one-dimensional crystal ordering in three dimensions show extended short-range correlations that exhibit universal structure and scaling, anomalous layer elasticity, and glassy dynamics.
Abstract: We present experimental and theoretical studies of the effects of quenched disorder on one-dimensional crystal ordering in three dimensions. This fragile smectic liquid crystal layering, the material with the simplest positional order, is also the most easily deformed periodic structure and is, therefore, profoundly affected by disorder, introduced here by confinement in silica aerogel. Theory and experiment combine to characterize this system to an extraordinary degree, their close accord producing a coherent picture: crystal ordering is lost, giving way to extended short-range correlations that exhibit universal structure and scaling, anomalous layer elasticity, and glassy dynamics.

161 citations